import Mathlib.Logic.Basic -- Declare Hilbert-style axioms with implicit arguments. axiom A1 (α β : Prop) : (α ∧ β) → α axiom A2 (α β : Prop) : (α ∧ β) → β axiom A3 (α β : Prop) : α → (β → (α ∧ β)) axiom A4 (α β : Prop) : α → (α ∨ β) axiom A5 (α β : Prop) : β → (α ∨ β) axiom A6 (α β γ : Prop) : (α → γ) → ((β → γ) → ((α ∨ β) → γ)) axiom A7 (α β : Prop) : α → (β → α) axiom A8 (α β γ : Prop) : (α → (β → γ)) → ((α → β) → (α → γ)) axiom A9 (α β : Prop) : (α → β) → ((α → ¬β) → ¬α) axiom A10 (α β : Prop) : ¬α → (α → β) axiom A11 (α : Prop) : α → True axiom A12 (α : Prop) : False → α axiom A13 (α : Prop) : (α → False) → ¬α -- prove axiom A14 as homework -- Note the difference of Boolean and Proposition types #check Bool.true #check true #check True -- Example theorem imp_vee (δ φ : Prop) : (¬δ ∨ φ) → (δ → φ) := by let h1 : ¬δ → (δ → φ) := A10 δ φ let h2 : φ → (δ → φ) := A7 φ δ let h3 : (¬δ → (δ → φ)) → (φ → (δ → φ)) → ((¬δ ∨ φ) → (δ → φ)) := A6 (¬δ) φ (δ → φ) exact h3 h1 h2 -- Example 2: now we prove φ → φ theorem id_phi (φ : Prop) : φ → φ := by -- Instantiate H7 with α := φ and β := φ. let h1 : φ → (φ → φ) := A7 φ φ -- Instantiate H7 with α := φ and β := (φ → φ). let h2 : φ → ((φ → φ) → φ) := A7 φ (φ → φ) -- Instantiate H8 with α := φ, β := (φ → φ), and γ := φ. let h3 : (φ → ((φ → φ) → φ)) → ((φ → (φ → φ)) → (φ → φ)) := A8 φ (φ → φ) φ -- Apply h3 to h2 to obtain a function of type φ → (φ → φ) → (φ → φ) have h4 : (φ → (φ → φ)) → (φ → φ) := h3 h2 -- make sure the order is correct -- Finally, apply h4 to h1 to yield the desired proof. exact h4 h1 -- Example 3: syllogism, sentential ver. theorem prop_syl (α β γ : Prop) (h1 : α → β) (h2 : β → γ) : α → γ := by let h3 : (β → γ) → (α → (β → γ)) := A7 (β → γ) α have h4 : (α → (β → γ)) := h3 h2 let h5 : (α → (β → γ)) → ((α → β) → (α → γ)) := A8 α β γ have h6 : (α → β) → (α → γ) := h5 h4 exact h6 h1 -- Example 4: use deduction theorem to prove identity theorem theorem id_phi_2 (φ : Prop) : φ → φ := by intro h1 exact h1 -- Example 5: use deduction theorem to prove syllogism theorem prop_syl_2 (α β γ : Prop) (h1 : α → β) (h2 : β → γ) : α → γ := by intro h3 -- apply deduction theorem have h4 : β := h1 h3 have h5 : γ := h2 h4 exact h5 /-- Homework 5: - Please be advised that this homework requires *syntactic proofs* only. You must use only the previously provided axioms and theorems. Aim to construct your own theory and axiomatic framework. - You may use deduction theorem to simplify your proof. - Let us faithfully follow Hilbert's teachings, DO NOT use shortcut tactics like "simp" or "simp_all", otherwise you won't get any credit in this homework. --/ -- Contraposition theorem contr_pos (α β : Prop) : (α → β) → (¬β → ¬α) := by sorry -- Triple negations theorem tri_neg (φ : Prop) : ¬¬¬φ → ¬φ := by sorry -- Axiom 14 theorem A14 (α : Prop) : (¬¬α → α) := sorry theorem prop_1 (φ ψ γ : Prop) : (γ → ψ) → ((φ → γ) → (φ → ψ)) := by sorry theorem prop_2 (φ γ : Prop) : φ → ((φ → γ) → γ) := by sorry theorem prop_3 (φ γ ψ δ : Prop) : ((((φ ∧ γ) → ψ) → δ) → ((φ → ψ) → δ)) := by sorry theorem prop_4 (φ γ : Prop) (h1 : φ → γ) (h2 : φ → ¬γ) : ¬φ := by sorry theorem prop_5 (φ ψ γ : Prop) (h1 : γ → ψ) (h2 : γ → (ψ → φ)) : γ → φ := by sorry