/-- Inductive definition of a type. Definition 1.2 --/ inductive WFF : Type -- Base case | p_atm : String → WFF -- Induction steps | p_not : WFF → WFF | p_and : WFF → WFF → WFF | p_or : WFF → WFF → WFF | p_imp : WFF → WFF → WFF | p_iff : WFF → WFF → WFF open WFF /-- Inductive definition of a function. Definition 1.3 --/ def WFF_to_String : WFF → String -- Base case | p_atm s => s -- Induction steps | p_not φ => "(¬" ++ WFF_to_String φ ++ ")" | p_and φ ψ => "(" ++ WFF_to_String φ ++ " ∧ " ++ WFF_to_String ψ ++ ")" | p_or φ ψ => "(" ++ WFF_to_String φ ++ " ∨ " ++ WFF_to_String ψ ++ ")" | p_imp φ ψ => "(" ++ WFF_to_String φ ++ " → " ++ WFF_to_String ψ ++ ")" | p_iff φ ψ => "(" ++ WFF_to_String φ ++ " ↔ " ++ WFF_to_String ψ ++ ")" /-- Utility function for fancy outputs --/ instance : ToString WFF where toString := WFF_to_String def A₁ : WFF := p_atm "A₁" def A₂ : WFF := p_atm "A₂" def A₃ : WFF := p_atm "A₃" def A₄ : WFF := p_atm "A₄" def A₅ : WFF := p_atm "A₅" def A₆ : WFF := p_atm "A₆" def A₇ : WFF := p_atm "A₇" def A₈ : WFF := p_atm "A₈" def A₉ : WFF := p_atm "A₉" def A₁₀ : WFF := p_atm "A₁₀" def complex_WFF : WFF := p_imp (p_and A₁ (p_not A₂)) A₃ #eval WFF_to_String complex_WFF /-- Definition 1.4 --/ def construct_seq : WFF → List WFF -- Base case | p_atm s => [p_atm s] -- Induction steps | p_not φ => (construct_seq φ) ++ [p_not φ] | p_and φ ψ => (construct_seq φ) ++ (construct_seq ψ) ++ [p_and φ ψ] | p_or φ ψ => (construct_seq φ) ++ (construct_seq ψ) ++ [p_or φ ψ] | p_imp φ ψ => (construct_seq φ) ++ (construct_seq ψ) ++ [p_imp φ ψ] | p_iff φ ψ => (construct_seq φ) ++ (construct_seq ψ) ++ [p_iff φ ψ] #eval construct_seq complex_WFF /-- Example --/ def super_complex_WFF : WFF := p_imp (p_and A₁ A₁₀) (p_or (p_not A₃) (p_iff A₈ A₃)) #eval super_complex_WFF #eval construct_seq super_complex_WFF /-- Functions for formalizing Theorem 1.8 --/ def WFF_num_left_brackets : WFF → Nat -- base case | p_atm _ => 0 -- induction step | p_not φ => WFF_num_left_brackets φ + 1 | p_and φ ψ => WFF_num_left_brackets φ + WFF_num_left_brackets ψ + 1 | p_or φ ψ => WFF_num_left_brackets φ + WFF_num_left_brackets ψ + 1 | p_imp φ ψ => WFF_num_left_brackets φ + WFF_num_left_brackets ψ + 1 | p_iff φ ψ => WFF_num_left_brackets φ + WFF_num_left_brackets ψ + 1 def WFF_num_right_brackets : WFF → Nat -- base case | p_atm _ => 0 -- induction step | p_not φ => WFF_num_right_brackets φ + 1 | p_and φ ψ => WFF_num_right_brackets φ + WFF_num_right_brackets ψ + 1 | p_or φ ψ => WFF_num_right_brackets φ + WFF_num_right_brackets ψ + 1 | p_imp φ ψ => WFF_num_right_brackets φ + WFF_num_right_brackets ψ + 1 | p_iff φ ψ => WFF_num_right_brackets φ + WFF_num_right_brackets ψ + 1 #eval super_complex_WFF #eval WFF_num_right_brackets super_complex_WFF /-- Theorem 1.8a. TODO: please finish the proof by yourself --/ theorem WFF_balance_of_brackets : ∀ f : WFF, WFF_num_left_brackets f = WFF_num_right_brackets f := by intro f induction f case p_atm => rfl case p_not f' IH_not => unfold WFF_num_left_brackets unfold WFF_num_right_brackets rewrite [IH_not] rfl case p_and f' g' IH_and_1 IH_and_2 => unfold WFF_num_left_brackets unfold WFF_num_right_brackets rewrite [IH_and_1, IH_and_2] rfl case p_or => sorry case p_imp => sorry case p_iff => sorry