import Mathlib.Data.Set.Basic import Mathlib.Data.Finset.Basic import Mathlib.Data.Bool.Basic /-- Syntax of well‐formed formulas (WFF) in propositional logic. -/ inductive WFF : Type where | p_atm : String → WFF | p_not : WFF → WFF | p_and : WFF → WFF → WFF | p_or : WFF → WFF → WFF | p_imp : WFF → WFF → WFF | p_iff : WFF → WFF → WFF open WFF def WFF_to_String : WFF → String -- Base case | p_atm s => s -- Induction steps | p_not φ => "(¬" ++ WFF_to_String φ ++ ")" | p_and φ ψ => "(" ++ WFF_to_String φ ++ " ∧ " ++ WFF_to_String ψ ++ ")" | p_or φ ψ => "(" ++ WFF_to_String φ ++ " ∨ " ++ WFF_to_String ψ ++ ")" | p_imp φ ψ => "(" ++ WFF_to_String φ ++ " → " ++ WFF_to_String ψ ++ ")" | p_iff φ ψ => "(" ++ WFF_to_String φ ++ " ↔ " ++ WFF_to_String ψ ++ ")" /-- Utility function for fancy outputs --/ instance : ToString WFF where toString := WFF_to_String /-- Some atomic formulas for testing. -/ def A₁ : WFF := p_atm "A₁" def A₂ : WFF := p_atm "A₂" def A₃ : WFF := p_atm "A₃" def A₄ : WFF := p_atm "A₄" def A₅ : WFF := p_atm "A₅" def A₆ : WFF := p_atm "A₆" def A₇ : WFF := p_atm "A₇" def A₈ : WFF := p_atm "A₈" def A₉ : WFF := p_atm "A₉" def A₁₀ : WFF := p_atm "A₁₀" /-- A sample complex formula for testing: (A₁ ∧ (¬A₂)) → A₃ -/ def complex_WFF : WFF := p_imp (p_and A₁ (p_not A₂)) A₃ /-- The valuation function for formulas. It takes an atomic valuation (a function from String to Bool) and recursively computes the truth value of a formula. -/ def v (v_atom : String → Bool) : WFF → Bool | p_atm s => v_atom s | p_not φ => not (v v_atom φ) | p_and φ ψ => and (v v_atom φ) (v v_atom ψ) | p_or φ ψ => or (v v_atom φ) (v v_atom ψ) | p_imp φ ψ => or (not (v v_atom φ)) (v v_atom ψ) | p_iff φ ψ => (v v_atom φ) = (v v_atom ψ) /-- We define a set of “true” atoms using a Finset (because membership in a Finset is decidable). -/ def true_atoms : Finset String := {"A₁"} /-- The atomic valuation function: an atom is true if it is in the given Finset. -/ def v_atom (S : Finset String) (s : String) : Bool := if s ∈ S then true else false -- Test evaluation: note that #eval shows the formula and its computed truth value. #eval complex_WFF #eval v (v_atom true_atoms) complex_WFF /- -------------------------------------------------------------------------------- Example 1. Uniqueness of Evaluation Under Atomic Agreement -------------------------------------------------------------------------------- Show that if two atomic valuations agree on every atom, then they yield the same formula valuation. -/ theorem valuation_uniqueness {v₁ v₂ : String → Bool} (h : ∀ s : String, v₁ s = v₂ s) : ∀ φ : WFF, v v₁ φ = v v₂ φ := by intro φ induction φ case p_atm s => simp [v, h s] case p_not φ IH => simp [v, IH] case p_and φ ψ IH₁ IH₂ => simp [v, IH₁, IH₂] case p_or φ ψ IH₁ IH₂ => simp [v, IH₁, IH₂] case p_imp φ ψ IH₁ IH₂ => simp [v, IH₁, IH₂] case p_iff φ ψ IH₁ IH₂ => simp [v, IH₁, IH₂] /- -------------------------------------------------------------------------------- Example 2. Commutativity of Conjunction -------------------------------------------------------------------------------- Prove that for any atomic valuation v_atom and formulas φ and ψ, we have: v v_atom (p_and φ ψ) = v v_atom (p_and ψ φ) -/ theorem valuation_and_comm (v_atom : String → Bool) (φ ψ : WFF) : v v_atom (p_and φ ψ) = v v_atom (p_and ψ φ) := by simp [v, Bool.and_comm] /- -------------------------------------------------------------------------------- Example 3. Reflexivity of Implication -------------------------------------------------------------------------------- Prove that for any atomic valuation v_atom and formula φ, the formula p_imp φ φ (i.e. φ → φ) evaluates to true. -/ theorem imp_rfl (v_atom : String → Bool) (φ : WFF) : v v_atom (p_imp φ φ) = true := by unfold v let a := v v_atom φ; simp /- -------------------------------------------------------------------------------- Example 4. De Morgan’s Law for Conjunction -------------------------------------------------------------------------------- Prove that for any atomic valuation v_atom and formulas φ and ψ, the following holds: v v_atom (p_not (p_and φ ψ)) = v v_atom (p_or (p_not φ) (p_not ψ)) This corresponds to one of De Morgan’s laws. -/ theorem de_morgan (v_atom : String → Bool) (φ ψ : WFF) : v v_atom (p_not (p_and φ ψ)) = v v_atom (p_or (p_not φ) (p_not ψ)) := by unfold v apply Bool.not_and #print Bool.not_and