
CHAPTER 7

Infinite Sets
In the previous chapter, we showed how to construct a bunch of
things—integers, rationals, and reals—assuming some naïve set
theory and the natural numbers. The question for this chapter
is: Can we construct the set of natural numbers itself using set
theory?

7.1 Hilbert’s Hotel

The set of the natural numbers is obviously infinite. So, if we
do not want to help ourselves to the natural numbers, our first
step must be characterize an infinite set in terms that do not
require mentioning the natural numbers themselves. Here is a
nice approach, presented by Hilbert in a lecture from 1924. He
asks us to imagine

[. . . ] a hotel with a finite number of rooms. All of
these rooms should be occupied by exactly one guest.
If the guests now swap their rooms somehow, [but] so
that each room still contains no more than one per-
son, then no rooms will become free, and the hotel-
owner cannot in this way create a new place for a
newly arriving guest [. . . ¶. . . ]

Now we stipulate that the hotel shall have infinitely
many numbered rooms 1, 2, 3, 4, 5, . . . , each of which
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is occupied by exactly one guest. As soon as a new
guest comes along, the owner only needs to move
each of the old guests into the room associated with
the number one higher, and room 1 will be free for
the newly-arriving guest.
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(published in Hilbert 2013, 730; our translation)

The crucial point is that Hilbert’s Hotel has infinitely many
rooms; and we can take his explanation to define what it means to
say this. Indeed, this was Dedekind’s approach (presented here,
of course, with massive anachronism; Dedekind’s definition is
from 1888):

Definition 7.1. A setA is Dedekind infinite iff there is an injection
from A to a proper subset of A. That is, there is some o ∈ A and
an injection f : A → A such that o ∉ ran( f ).

7.2 Dedekind Algebras

We not only want natural numbers to be infinite; we want them
to have certain (algebraic) properties: they need to behave well
under addition, multiplication, and so forth.

Dedekind’s idea was to take the idea of the successor function
as basic, and then characterise the numbers as those with the
following properties:

1. There is a number, 0, which is not the successor of any
number
i.e., 0 ∉ ran(s )
i.e., ∀x s (x) ≠ 0
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2. Distinct numbers have distinct successors
i.e., s is an injection
i.e., ∀x∀y (s (x) = s (y) → x = y)

3. Every number is obtained from 0 by repeated applications
of the successor function.

The first two conditions are easy to deal with using first-order
logic (see above). But we cannot deal with (3) just using first-
order logic. Dedekind’s breakthrough was to reformulate condi-
tion (3), set-theoretically, as follows:

3′. The natural numbers are the smallest set that is closed under
the successor function: that is, if we apply s to any member
of the set, we obtain another member of the set.

But we shall need to spell this out slowly.

Definition 7.2. For any function f , the set X is f -closed iff (∀x ∈
X ) f (x) ∈ X . Now define, for any o:

clof (o) =
⋂︂

{X : o ∈ X and X is f -closed}

So clof (o) is the intersection of all the f -closed sets with o as
a member. Intuitively, then, clof (o) is the smallest f -closed set
with o as a member. This next result makes that intuitive thought
precise;

Lemma 7.3. For any function f and any o ∈ A:

1. o ∈ clof (o); and

2. clof (o) is f -closed; and

3. if X is f -closed and o ∈ X , then clof (o) ⊆ X

Proof. Note that there is at least one f -closed set with o as a mem-
ber, namely ran( f ) ∪ {o}. So clof (o), the intersection of all such
sets, exists. We must now check (1)–(3).
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Concerning (1): o ∈ clof (o) as it is an intersection of sets
which all have o as a member.

Concerning (2): suppose x ∈ clof (o). So if o ∈ X and X is
f -closed, then x ∈ X , and now f (x) ∈ X as X is f -closed. So
f (x) ∈ clof (o).

Concerning (3): quite generally, if X ∈ C then
⋂︁
C ⊆ X . □

Using this, we can say:

Definition 7.4. A Dedekind algebra is a setA together with a func-
tion f : A → A and some o ∈ A such that:

1. o ∉ ran( f )

2. f is an injection

3. A = clof (o)

Since A = clof (o), our earlier result tells us that A is the
smallest f -closed set with o as a member. Clearly a Dedekind
algebra is Dedekind infinite; just look at clauses (1) and (2) of
the definition. But the more exciting fact is that any Dedekind
infinite set can be turned into a Dedekind algebra.

Theorem 7.5. If there is a Dedekind infinite set, then there is a
Dedekind algebra.

Proof. LetD be Dedekind infinite. So there is an injection g : D →
D and an element o ∈ D \ ran(g ). Now let A = clog (o); by
Lemma 7.3, A exists and o ∈ A. Let f = g↾A. We will show that
A, f ,o comprise a Dedekind algebra.

Concerning (1): o ∉ ran(g ) and ran( f ) ⊆ ran(g ) so o ∉

ran( f ).
Concerning (2): g is an injection on D ; so f ⊆ g must be an

injection.
Concerning (3): by Lemma 7.3, A is g -closed; a fortiori, A

is f -closed. So clof (o) ⊆ A by Lemma 7.3. Since also clof (o)
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is f -closed and f = g↾A, it follows that clof (o) is g -closed. So
A ⊆ clof (o) by Lemma 7.3. □

7.3 Dedekind Algebras and Arithmetical
Induction

Crucially, now, a Dedekind algebra—indeed, any Dedekind
algebra—will serve as a surrogate for the natural numbers. This
is thanks to the following trivial consequence:

Theorem 7.6 (Arithmetical induction). Let N ,s ,o comprise a
Dedekind algebra. Then for any set X :

if o ∈ X and (∀n ∈ N ∩ X )s (n) ∈ X , then N ⊆ X .

Proof. By the definition of a Dedekind algebra, N = clos (o). Now
if both o ∈ X and (∀n ∈ N ) (n ∈ X → s (n) ∈ X ), then N =

clos (o) ⊆ X . □

Since induction is characteristic of the natural numbers, the
point is this. Given any Dedekind infinite set, we can form a
Dedekind algebra, and use that algebra as our surrogate for the
natural numbers.

Admittedly, Theorem 7.6 formulates induction in set-theoretic
terms. But we can easily put the principle in terms which might
be more familiar:

Corollary 7.7. Let N ,s ,o comprise a Dedekind algebra. Then for any
formula 𝜑(x), which may have parameters:

if 𝜑(o) and (∀n ∈ N ) (𝜑(n) → 𝜑(s (n))), then (∀n ∈ N )𝜑(n)

Proof. Let X = {n ∈ N : 𝜑(n)}, and now use Theorem 7.6 □

In this result, we spoke of a formula “having parameters”.
What this means, roughly, is that for any objects c1, . . . ,ck , we can
work with 𝜑(x ,c1, . . . ,ck ). More precisely, we can state the result
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without mentioning “parameters” as follows. For any formula
𝜑(x ,v1, . . . ,vk ), whose free variables are all displayed, we have:

∀v1 . . .∀vk ((𝜑(o,v1, . . . ,vk ) ∧
(∀x ∈ N ) (𝜑(x ,v1, . . . ,vk ) → 𝜑(s (x),v1, . . . ,vk ))) →

(∀x ∈ N )𝜑(x ,v1, . . . ,vk ))

Evidently, speaking of “having parameters” can make things
much easier to read. (In part III, we will use this device rather
frequently.)

Returning to Dedekind algebras: given any Dedekind alge-
bra, we can also define the usual arithmetical functions of addi-
tion, multiplication and exponentiation. This is non-trivial, how-
ever, and it involves the technique of recursive definition. That
is a technique which we shall introduce and justify much later,
and in a much more general context. (Enthusiasts might want to
revisit this after chapter 13, or perhaps read an alternative treat-
ment, such as Potter 2004, pp. 95–8.) But, where N ,s ,o comprise
a Dedekind algebra, we will ultimately be able to stipulate the
following:

a + o = a a × o = o ao = s (o)
a + s (b) = s (a + b) a × s (b) = (a × b) + a as (b ) = ab × a

and show that these behave as one would hope.

7.4 Dedekind’s “Proof” of the Existence of
an Infinite Set

In this chapter, we have offered a set-theoretic treatment of the
natural numbers, in terms of Dedekind algebras. In section 6.5,
we reflected on the philosophical significance of the arithmetisa-
tion of analysis (among other things). Now we should reflect on
the significance of what we have achieved here.

Throughout chapter 6, we took the natural numbers as given,
and used them to construct the integers, rationals, and reals,
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explicitly. In this chapter, we have not given an explicit construc-
tion of the natural numbers. We have just shown that, given any
Dedekind infinite set, we can define a set which will behave just like
we want N to behave.

Obviously, then, we cannot claim to have answered a meta-
physical question, such as which objects are the natural numbers. But
that’s a good thing. After all, in section 6.5, we emphasized that
we would be wrong to think of the definition of R as the set of
Dedekind cuts as a discovery, rather than a convenient stipulation.
The crucial observation is that the Dedekind cuts exemplify the
key mathematical properties of the real numbers. So too here:
the crucial observation is that any Dedekind algebra exemplifies
the key mathematical properties of the natural numbers. (Indeed,
Dedekind pushed this point home by proving that all Dedekind
algebras are isomorphic (1888, Theorems 132–3). It is no surprise,
then, that many contemporary “structuralists” cite Dedekind as
a forerunner.)

Moreover, we have shown how to embed the theory of the
natural numbers into a naïve simple set theory, which itself still
remains rather informal, but which doesn’t (apparently) assume
the natural numbers as given. So, we may be on the way to realis-
ing Dedekind’s own ambitious project, which he explained thus:

In science nothing capable of proof ought to be be-
lieved without proof. Though this demand seems rea-
sonable, I cannot regard it as having been met even
in the most recent methods of laying the foundations
of the simplest science; viz., that part of logic which
deals with the theory of numbers. In speaking of
arithmetic (algebra, analysis) as merely a part of logic
I mean to imply that I consider the number-concept
entirely independent of the notions or intuitions of
space and time—that I rather consider it an immedi-
ate product of the pure laws of thought. (Dedekind,
1888, preface)

Dedekind’s bold idea is this. We have just shown how to build
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the natural numbers using (naïve) set theory alone. In chapter 6,
we saw how to construct the reals given the natural numbers and
some set theory. So, perhaps, “arithmetic (algebra, analysis)”
turn out to be “merely a part of logic” (in Dedekind’s extended
sense of the word “logic”).

That’s the idea. But hold on for a moment. Our construction
of a Dedekind algebra (our surrogate for the natural numbers) is
conditional on the existence of a Dedekind infinite set. ( Just look
back to Theorem 7.5.) Unless the existence of a Dedekind infinite
set can be established via “logic” or “the pure laws of thought”,
the project stalls.

So, can the existence of a Dedekind infinite set be established
by “the pure laws of thought”? Here was Dedekind’s effort:

My own realm of thoughts, i.e., the totality S of all
things which can be objects of my thought, is infinite.
For if s signifies an element of S , then the thought
s ′ that s can be an object of my thought, is itself an
element of S . If we regard this as an image 𝜑(s ) of
the element s , then . . . S is [Dedekind] infinite, which
was to be proved. (Dedekind, 1888, §66)

This is quite an astonishing thing to find in the middle of a book
which largely consists of highly rigorous mathematical proofs.
Two remarks are worth making.

First: this “proof” scarcely has what we would now recognize
as a “mathematical” character. It speaks of psychological objects
(thoughts), and merely possible ones at that.

Second: at least as we have presented Dedekind algebras,
this “proof” has a straightforward technical shortcoming. If
Dedekind’s argument is successful, it establishes only that there
are infinitely many things (specifically, infinitely many thoughts).
But Dedekind also needs to give us a reason to regard S as a sin-
gle set, with infinitely many members, rather than thinking of S
as some things (in the plural).

The fact that Dedekind did not see a gap here might sug-
gest that his use of the word “totality” does not precisely track
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our use of the word “set”.1 But this would not be too surprising.
The project we have pursued in the last two chapters—a “con-
struction” of the naturals, and from them a “construction” of the
integers, reals and rationals—has all been carried out naïvely.
We have helped ourselves to this set, or that set, as and when we
have needed them, without laying down many general principles
concerning exactly which sets exist, and when. But we know that
we need some general principles, for otherwise we will fall into
Russell’s Paradox.

The time has come for us to outgrow our naïvety.

7.5 Appendix: Proving Schröder-Bernstein

Before we depart from naïve set theory, we have one last naïve
(but sophisticated!) proof to consider. This is a proof of Schröder-
Bernstein (Theorem 5.17): if A ⪯ B and B ⪯ A then A ≈ B ; i.e.,
given injections f : A → B and g : B → A there is a bijection
h : A → B .

In this chapter, we followed Dedekind’s notion of closures. In
fact, Dedekind provided a lovely proof of Schröder-Bernstein us-
ing this notion, and we will present it here. The proof closely
follows Potter (2004, pp. 157–8), if you want a slightly different
but essentially similar treatment. A little googling will also con-
vince you that this is a theorem—rather like the irrationality of√
2—for which many interesting and different proofs exist.

Using similar notation as Definition 7.2, let

Clof (B) =
⋂︂

{X : B ⊆ X and X is f -closed}

for each set B and function f . Defined thus, Clof (B) is the
smallest f -closed set containing B , in that:

1Indeed, we have other reasons to think it did not; see Potter (2004, p. 23).
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Lemma 7.8. For any function f , and any B:

1. B ⊆ Clof (B); and

2. Clof (B) is f -closed; and

3. if X is f -closed and B ⊆ X , then Clof (B) ⊆ X .

Proof. Exactly as in Lemma 7.3. □

We need one last fact to get to Schröder-Bernstein:

Proposition 7.9. If A ⊆ B ⊆ C and A ≈ C , then A ≈ B ≈ C .

Proof. Given a bijection f : C → A, let F = Clof (C \ B) and
define a function g with domain C as follows:

g (x) =
{︄
f (x) if x ∈ F
x otherwise

We’ll show that g is a bijection from C → B , from which it will
follow that g ◦ f −1 : A → B is a bijection, completing the proof.

First we claim that if x ∈ F but y ∉ F then g (x) ≠ g (y).
For reductio suppose otherwise, so that y = g (y) = g (x) = f (x).
Since x ∈ F and F is f -closed by Lemma 7.8, we have y = f (x) ∈
F , a contradiction.

Now suppose g (x) = g (y). So, by the above, x ∈ F iff y ∈ F .
If x ,y ∈ F , then f (x) = g (x) = g (y) = f (y) so that x = y since
f is a bijection. If x ,y ∉ F , then x = g (x) = g (y) = y . So g is
an injection.

It remains to show that ran(g ) = B . So fix x ∈ B ⊆ C . If
x ∉ F , then g (x) = x . If x ∈ F , then x = f (y) for some y ∈ F ,
since otherwise F \{x} would be f -closed and extendC \B , which
is impossible by Lemma 7.8; now g (y) = f (y) = x . □

Finally, here is the proof of the main result. Recall that given
a function h and set D , we define h [D] = {h (x) : x ∈ D}.
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Proof of Schröder-Bernstein. Let f : A → B and g : B → A be in-
jections. Since f [A] ⊆ B we have that g [ f [A]] ⊆ g [B] ⊆ A.
Also, g ◦ f : A → g [ f [A]] is an injection since both g and f
are; and indeed g ◦ f is a bijection, just by the way we defined
its codomain. So g [ f [A]] ≈ A, and hence by Proposition 7.9
there is a bijection h : A → g [B]. Moreover, g −1 is a bijection
g [B] → B . So g −1 ◦ h : A → B is a bijection. □


