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Preface

I n writing this book, I was guided by my long-standing experience and interest in teaching
discrete mathematics. For the student, my purpose was to present material in a precise,

readable manner, with the concepts and techniques of discrete mathematics clearly presented
and demonstrated. My goal was to show the relevance and practicality of discrete mathematics
to students, who are often skeptical. I wanted to give students studying computer science all of
the mathematical foundations they need for their future studies. I wanted to give mathematics
students an understanding of important mathematical concepts together with a sense of why
these concepts are important for applications. And most importantly, I wanted to accomplish
these goals without watering down the material.

For the instructor, my purpose was to design a �exible, comprehensive teaching tool using
proven pedagogical techniques in mathematics. I wanted to provide instructors with a package
of materials that they could use to teach discrete mathematics effectively and ef�ciently in the
most appropriate manner for their particular set of students. I hope that I have achieved these
goals.

I have been extremely grati�ed by the tremendous success of this text. The many improve-
ments in the seventh edition have been made possible by the feedback and suggestions of a large
number of instructors and students at many of the more than 600 North American schools, and
at any many universities in parts of the world, where this book has been successfully used.

This text is designed for a one- or two-term introductory discrete mathematics course taken
by students in a wide variety of majors, including mathematics, computer science, and engineer-
ing. College algebra is the only explicit prerequisite, although a certain degree of mathematical
maturity is needed to study discrete mathematics in a meaningful way. This book has been de-
signed to meet the needs of almost all types of introductory discrete mathematics courses. It is
highly �exible and extremely comprehensive. The book is designed not only to be a successful
textbook, but also to serve as valuable resource students can consult throughout their studies
and professional life.

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should learn a particular
set of mathematical facts and how to apply them; more importantly, such a course should teach
students how to think logically and mathematically. To achieve these goals, this text stresses
mathematical reasoning and the different ways problems are solved. Five important themes
are interwoven in this text: mathematical reasoning, combinatorial analysis, discrete structures,
algorithmic thinking, and applications and modeling. A successful discrete mathematics course
should carefully blend and balance all �ve themes.

1. Mathematical Reasoning:Students must understand mathematical reasoning in order to
read, comprehend, and construct mathematical arguments. This text starts with a discussion
of mathematical logic, which serves as the foundation for the subsequent discussions of
methods of proof. Both the science and the art of constructing proofs are addressed. The
technique of mathematical induction is stressed through many different types of examples
of such proofs and a careful explanation of why mathematical induction is a valid proof
technique.
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2. Combinatorial Analysis:An important problem-solving skill is the ability to count or enu-
merate objects. The discussion of enumeration in this book begins with the basic techniques
of counting. The stress is on performing combinatorial analysis to solve counting problems
and analyze algorithms, not on applying formulae.

3. Discrete Structures:A course in discrete mathematics should teach students how to work
with discrete structures, which are the abstract mathematical structures used to represent
discrete objects and relationships between these objects. These discrete structures include
sets, permutations, relations, graphs, trees, and �nite-state machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the speci�cation of an
algorithm. After an algorithm has been described, a computer program can be constructed
implementing it. The mathematical portions of this activity, which include the speci�cation
of the algorithm, the veri�cation that it works properly, and the analysis of the computer
memory and time required to perform it, are all covered in this text. Algorithms are described
using both English and an easily understood form of pseudocode.

5. Applications and Modeling:Discrete mathematics has applications to almost every conceiv-
able area of study. There are many applications to computer science and data networking
in this text, as well as applications to such diverse areas as chemistry, biology, linguistics,
geography, business, and the Internet. These applications are natural and important uses of
discrete mathematics and are not contrived. Modeling with discrete mathematics is an ex-
tremely important problem-solving skill, which students have the opportunity to develop by
constructing their own models in some of the exercises.

Changes in the Seventh Edition

Although the sixth edition has been an extremely effective text, many instructors, including
longtime users, have requested changes designed to make this book more effective. I have
devoted a signi�cant amount of time and energy to satisfy their requests and I have worked hard
to �nd my own ways to make the book more effective and more compelling to students.

The seventh edition is a major revision, with changes based on input from more than 40
formal reviewers, feedback from students and instructors, and author insights. The result is a
new edition that offers an improved organization of topics making the book a more effective
teaching tool. Substantial enhancements to the material devoted to logic, algorithms, number
theory, and graph theory make this book more �exible and comprehensive. Numerous changes
in the seventh edition have been designed to help students more easily learn the material.
Additional explanations and examples have been added to clarify material where students often
have dif�culty. New exercises, both routine and challenging, have been added. Highly relevant
applications, including many related to the Internet, to computer science, and to mathematical
biology, have been added. The companion website has bene�ted from extensive development
activity and now provides tools students can use to master key concepts and explore the world
of discrete mathematics, and many new tools under development will be released in the year
following publication of this book.

I hope that instructors will closely examine this new edition to discover how it might meet
their needs. Although it is impractical to list all the changes in this edition, a brief list that
highlights some key changes, listed by the bene�ts they provide, may be useful.

More Flexible Organization

� Applications of propositional logic are found in a new dedicated section, which brie�y
introduces logic circuits.

� Recurrence relations are now covered in Chapter 2.

� Expanded coverage of countability is now found in a dedicated section in Chapter 2.
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� Separate chapters now provide expanded coverage of algorithms (Chapter 3) and number
theory and cryptography (Chapter 4).

� More second and third level heads have been used to break sections into smaller coherent
parts.

Tools for Easier Learning

� Dif�cult discussions and proofs have been marked with the famous Bourbaki “dangerous
bend” symbol in the margin.

� New marginal notes make connections, add interesting notes, and provide advice to
students.

� More details and added explanations, in both proofs and exposition, make it easier for
students to read the book.

� Many new exercises, both routine and challenging, have been added, while many ex-
isting exercises have been improved.

Enhanced Coverage of Logic, Sets, and Proof

� The satis�ability problem is addressed in greater depth, with Sudoku modeled in terms
of satis�ability.

� Hilbert’s Grand Hotel is used to help explain uncountability.

� Proofs throughout the book have been made more accessible by adding steps and reasons
behind these steps.

� A template for proofs by mathematical induction has been added.

� The step that applies the inductive hypothesis in mathematical induction proof is now
explicitly noted.

Algorithms

� The pseudocode used in the book has been updated.

� Explicit coverage of algorithmic paradigms, including brute force, greedy algorithms,
and dynamic programing, is now provided.

� Useful rules for big-Oestimates of logarithms, powers, and exponential functions have
been added.

Number Theory and Cryptography

� Expanded coverage allows instructors to include just a little or a lot of number theory
in their courses.

� The relationship between themod function and congruences has been explained more
fully.

� The sieve of Eratosthenes is now introduced earlier in the book.

� Linear congruences and modular inverses are now covered in more detail.

� Applications of number theory, including check digits and hash functions, are covered
in great depth.

� A new section on cryptography integrates previous coverage, and the notion of a cryp-
tosystem has been introduced.

� Cryptographic protocols, including digital signatures and key sharing, are now covered.
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Graph Theory

� A structured introduction to graph theory applications has been added.

� More coverage has been devoted to the notion of social networks.

� Applications to the biological sciences and motivating applications for graph isomor-
phism and planarity have been added.

� Matchings in bipartite graphs are now covered, including Hall’s theorem and its proof.

� Coverage of vertex connectivity, edge connectivity, andn-connectedness has been
added, providing more insight into the connectedness of graphs.

Enrichment Material

� Many biographies have been expanded and updated, and new biographies of Bellman,
Bézout Bienyamé, Cardano, Catalan, Cocks, Cook, Dirac, Hall, Hilbert, Ore, and Tao
have been added.

� Historical information has been added throughout the text.

� Numerous updates for latest discoveries have been made.

Expanded Media

� Extensive effort has been devoted to producing valuable web resources for this book.

� Extra examples in key parts of the text have been provided on companion website.

� Interactive algorithms have been developed, with tools for using them to explore topics
and for classroom use.

� A new online ancillary,The Virtual Discrete Mathematics Tutor, available in fall 2012,
will help students overcome problems learning discrete mathematics.

� A new homework delivery system, available in fall 2012, will provide automated home-
work for both numerical and conceptual exercises.

� Student assessment modules are available for key concepts.

� Powerpoint transparencies for instructor use have been developed.

� A supplementExploring Discrete Mathematicshas been developed, providing extensive
support for using MapleTM or MathematicaTM in conjunction with the book.

� An extensive collection of external web links is provided.

Features of the Book

ACCESSIBILITY This text has proved to be easily read and understood by beginning
students. There are no mathematical prerequisites beyond college algebra for almost all the
content of the text. Students needing extra help will �nd tools on the companion website for
bringing their mathematical maturity up to the level of the text. The few places in the book
where calculus is referred to are explicitly noted. Most students should easily understand the
pseudocode used in the text to express algorithms, regardless of whether they have formally
studied programming languages. There is no formal computer science prerequisite.

Each chapter begins at an easily understood and accessible level. Once basic mathematical
concepts have been carefully developed, more dif�cult material and applications to other areas
of study are presented.
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FLEXIBILITY This text has been carefully designed for �exible use. The dependence
of chapters on previous material has been minimized. Each chapter is divided into sections of
approximately the same length, and each section is divided into subsections that form natural
blocks of material for teaching. Instructors can easily pace their lectures using these blocks.

WRITING STYLE The writing style in this book is direct and pragmatic. Precise mathe-
matical language is used without excessive formalism and abstraction. Care has been taken to
balance the mix of notation and words in mathematical statements.

MATHEMATICAL RIGOR AND PRECISION All de�nitions and theorems in this text
are stated extremely carefully so that students will appreciate the precision of language and
rigor needed in mathematics. Proofs are motivated and developed slowly; their steps are all
carefully justi�ed. The axioms used in proofs and the basic properties that follow from them
are explicitly described in an appendix, giving students a clear idea of what they can assume in
a proof. Recursive de�nitions are explained and used extensively.

WORKED EXAMPLES Over 800 examples are used to illustrate concepts, relate different
topics, and introduce applications. In most examples, a question is �rst posed, then its solution
is presented with the appropriate amount of detail.

APPLICATIONS The applications included in this text demonstrate the utility of discrete
mathematics in the solution of real-world problems. This text includes applications to a wide va-
riety of areas, including computer science, data networking, psychology, chemistry, engineering,
linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of algo-
rithms; hence, key algorithms are introduced in each chapter of the book. These algorithms
are expressed in words and in an easily understood form of structured pseudocode, which is
described and speci�ed in Appendix 3. The computational complexity of the algorithms in the
text is also analyzed at an elementary level.

HISTORICAL INFORMATION The background of many topics is succinctly described
in the text. Brief biographies of 83 mathematicians and computer scientists are included as foot-
notes. These biographies include information about the lives, careers, and accomplishments of
these important contributors to discrete mathematics and images, when available, are displayed.

In addition, numerous historical footnotes are included that supplement the historical in-
formation in the main body of the text. Efforts have been made to keep the book up-to-date by
re�ecting the latest discoveries.

KEY TERMS AND RESULTS A list of key terms and results follows each chapter. The
key terms include only the most important that students should learn, and not every term de�ned
in the chapter.

EXERCISES There are over 4000 exercises in the text, with many different types of
questions posed. There is an ample supply of straightforward exercises that develop basic skills,
a large number of intermediate exercises, and many challenging exercises. Exercises are stated
clearly and unambiguously, and all are carefully graded for level of dif�culty. Exercise sets
contain special discussions that develop new concepts not covered in the text, enabling students
to discover new ideas through their own work.

Exercises that are somewhat more dif�cult than average are marked with a single star� ;
those that are much more challenging are marked with two stars�� . Exercises whose solutions
require calculus are explicitly noted. Exercises that develop results used in the text are clearly
identi�ed with the right pointing hand symbol . Answers or outlined solutions to all odd-
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numbered exercises are provided at the back of the text. The solutions include proofs in which
most of the steps are clearly spelled out.

REVIEW QUESTIONS A set of review questions is provided at the end of each chapter.
These questions are designed to help students focus their study on the most important concepts
and techniques of that chapter. To answer these questions students need to write long answers,
rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and varied
set of supplementary exercises. These exercises are generally more dif�cult than those in the
exercise sets following the sections. The supplementary exercises reinforce the concepts of the
chapter and integrate different topics more effectively.

COMPUTER PROJECTS Each chapter is followed by a set of computer projects. The
approximately 150 computer projects tie together what students may have learned in computing
and in discrete mathematics. Computer projects that are more dif�cult than average, from both
a mathematical and a programming point of view, are marked with a star, and those that are
extremely challenging are marked with two stars.

COMPUTATIONS AND EXPLORATIONS A set of computations and explorations is
included at the conclusion of each chapter. These exercises (approximately 120 in total) are de-
signed to be completed using existing software tools, such as programs that students or instruc-
tors have written or mathematical computation packages such as MapleTM or MathematicaTM.
Many of these exercises give students the opportunity to uncover new facts and ideas through
computation. (Some of these exercises are discussed in theExploring Discrete Mathematics
companion workbooks available online.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To do these
projects students need to consult the mathematical literature. Some of these projects are historical
in nature and may involve looking up original sources. Others are designed to serve as gateways
to new topics and ideas. All are designed to expose students to ideas not covered in depth in
the text. These projects tie mathematical concepts together with the writing process and help
expose students to possible areas for future study. (Suggested references for these projects can
be found online or in the printedStudent’s Solutions Guide.)

APPENDIXES There are three appendixes to the text. The �rst introduces axioms for real
numbers and the positive integers, and illustrates how facts are proved directly from these axioms.
The second covers exponential and logarithmic functions, reviewing some basic material used
heavily in the course. The third speci�es the pseudocode used to describe algorithms in this text.

SUGGESTED READINGS A list of suggested readings for the overall book and for each
chapter is provided after the appendices. These suggested readings include books at or below
the level of this text, more dif�cult books, expository articles, and articles in which discoveries
in discrete mathematics were originally published. Some of these publications are classics,
published many years ago, while others have been published in the last few years.

How to Use This Book

This text has been carefully written and constructed to support discrete mathematics courses
at several levels and with differing foci. The following table identi�es the core and optional
sections. An introductory one-term course in discrete mathematics at the sophomore level can
be based on the core sections of the text, with other sections covered at the discretion of the
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instructor. A two-term introductory course can include all the optional mathematics sections in
addition to the core sections. A course with a strong computer science emphasis can be taught
by covering some or all of the optional computer science sections. Instructors can �nd sample
syllabi for a wide range of discrete mathematics courses and teaching suggestions for using each
section of the text can be found in theInstructor’s Resource Guideavailable on the website for
this book.

Chapter Core Optional CS Optional Math

1 1.1–1.8 (as needed)
2 2.1–2.4, 2.6 (as needed) 2.5
3 3.1–3.3 (as needed)
4 4.1–4.4 (as needed) 4.5, 4.6
5 5.1–5.3 5.4, 5.5
6 6.1–6.3 6.6 6.4, 6.5
7 7.1 7.4 7.2, 7.3
8 8.1, 8.5 8.3 8.2, 8.4, 8.6
9 9.1, 9.3, 9.5 9.2 9.4, 9.6

10 10.1–10.5 10.6–10.8
11 11.1 11.2, 11.3 11.4, 11.5
12 12.1–12.4
13 13.1–13.5

Instructors using this book can adjust the level of dif�culty of their course by choosing
either to cover or to omit the more challenging examples at the end of sections, as well as
the more challenging exercises. The chapter dependency chart shown here displays the strong
dependencies.A star indicates that only relevant sections of the chapter are needed for study of a
later chapter. Weak dependencies have been ignored. More details can be found in the Instructor
Resource Guide.

Chapter 9*

Chapter 10*

Chapter 11

Chapter 13

Chapter 12
Chapter 2*

Chapter 7 Chapter 8

Chapter 6*

Chapter 3*

Chapter 1

Chapter 4*

Chapter 5*

Ancillaries

STUDENT’S SOLUTIONS GUIDE This student manual, available separately, contains
full solutions to all odd-numbered problems in the exercise sets. These solutions explain why
a particular method is used and why it works. For some exercises, one or two other possible
approaches are described to show that a problem can be solved in several different ways. Sug-
gested references for the writing projects found at the end of each chapter are also included in
this volume.Also included are a guide to writing proofs and an extensive description of common
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mistakes students make in discrete mathematics, plus sample tests and a sample crib sheet for
each chapter designed to help students prepare for exams.

(ISBN-10: 0-07-735350-1) (ISBN-13: 978-0-07-735350-6)

INSTRUCTOR’S RESOURCE GUIDE This manual, available on the website and in
printed form by request for instructors, contains full solutions to even-numbered exercises in
the text. Suggestions on how to teach the material in each chapter of the book are provided,
including the points to stress in each section and how to put the material into perspective. It
also offers sample tests for each chapter and a test bank containing over 1500 exam questions to
choose from. Answers to all sample tests and test bank questions are included. Finally, several
sample syllabi are presented for courses with differing emphases and student ability levels.

(ISBN-10: 0-07-735349-8) (ISBN-13: 978-0-07-735349-0)
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The Companion Website

The extensive companion website accompanying this text has been substantially enhanced
for the seventh edition This website is accessible atwww.mhhe.com/rosen. The homepage

shows theInformation Center, and contains login links for the site’sStudent SiteandInstructor
Site. Key features of each area are described below:

THE INFORMATION CENTER

The Information Center contains basic information about the book including the expanded
table of contents (including subsection heads), the preface, descriptions of the ancillaries, and
a sample chapter. It also provides a link that can be used to submit errata reports and other
feedback about the book.

STUDENT SITE

The Student site contains a wealth of resources available for student use, including the
following, tied into the text wherever the special icons displayed below are found in the text:

� Extra Examples You can �nd a large number of additional examples on the site, covering
all chapters of the book. These examples are concentrated in areas where students often
ask for additional material. Although most of these examples amplify the basic concepts,
more-challenging examples can also be found here.

� Interactive Demonstration Applets These applets enable you to interactively explore
how important algorithms work, and are tied directly to material in the text with linkages to
examples and exercises. Additional resources are provided on how to use and apply these
applets.

� Self Assessments These interactive guides help you assess your understanding of 14 key
concepts, providing a question bank where each question includes a brief tutorial followed
by a multiple-choice question. If you select an incorrect answer, advice is provided to help
you understand your error. Using these Self Assessments, you should be able to diagnose
your problems and �nd appropriate help.

� Web Resources GuideThis guide provides annotated links to hundreds of external websites
containing relevant material such as historical and biographical information, puzzles and
problems, discussions, applets, programs, and more. These links are keyed to the text by page
number.

Additional resources in the Student site include:

� Exploring Discrete Mathematics This ancillary provides help for using a computer alge-
bra system to do a wide range of computations in discrete mathematics. Each chapter provides
a description of relevant functions in the computer algebra system and how they are used, pro-
grams to carry out computations in discrete mathematics, examples, and exercises that can be
worked using this computer algebra system. Two versions,Exploring Discrete Mathematics
with MapleTM andExploring Discrete Mathematics with MathematicaTM will be available.

� Applications of Discrete Mathematics This ancillary contains 24 chapters—each with
its own set of exercises—presenting a wide variety of interesting and important applications
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covering three general areas in discrete mathematics: discrete structures, combinatorics, and
graph theory. These applications are ideal for supplementing the text or for independent study.

� A Guide to Proof-Writing This guide provides additional help for writing proofs, a skill
that many students �nd dif�cult to master. By reading this guide at the beginning of the
course and periodically thereafter when proof writing is required, you will be rewarded as
your proof-writing ability grows. (Also available in theStudent’s Solutions Guide.)

� Common Mistakes in Discrete MathematicsThis guide includes a detailed list of com-
mon misconceptions that students of discrete mathematics often have and the kinds of errors
they tend to make.You are encouraged to review this list from time to time to help avoid these
common traps. (Also available in theStudent’s Solutions Guide.)

� Advice onWriting Projects This guide offers helpful hints and suggestions for the Writing
Projects in the text, including an extensive bibliography of helpful books and articles for
research; discussion of various resources available in print and online; tips on doing library
research; and suggestions on how to write well. (Also available in theStudent’s Solutions
Guide.)

� The Virtual Discrete Mathematics Tutor This extensive ancillary provides students with
valuable assistance as they make the transition from lower-level courses to discrete mathemat-
ics. The errors students have made when studying discrete mathematics using this text has been
analyzed to design this resource. Students will be able to get many of their questions answered
and can overcome many obstacles via this ancillaries. TheVirtual Discrete Mathematics Tutor
is expected to be available in the fall of 2012.

INSTRUCTOR SITE

This part of the website provides access to all of the resources on the Student Site, as well as
these resources for instructors:

� Suggested Syllabi Detailed course outlines are shown, offering suggestions for courses
with different emphases and different student backgrounds and ability levels.

� Teaching Suggestions This guide contains detailed teaching suggestions for instructors,
including chapter overviews for the entire text, detailed remarks on each section, and comments
on the exercise sets.

� Printable Tests Printable tests are offered in TeX and Word format for every chapter, and
can be customized by instructors.

� PowerPoints Lecture Slides and PowerPoint Figures and TablesAn extensive collection
of PowerPoint slides for all chapters of the text are provided for instructor use. In addition,
images of all �gures and tables from the text are provided as PowerPoint slides.

� Homework Delivery System An extensive homework delivery system, under development
for availability in fall 2012, will provide questions tied directly to the text, so that students
will be able to do assignments on-line. Moreover, they will be able to use this system in a
tutorial mode. This system will be able to automatically grade assignments, and deliver free-
form student input to instructors for their own analysis. Course management capabilities will
be provided that will allow instructors to create assignments, automatically assign and grade
homework, quiz, and test questions from a bank of questions tied directly to the text, create
and edit their own questions, manage course announcements and due dates, and track student
progress.
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What is discrete mathematics?Discrete mathematics is the part of mathematics devoted to
the study of discrete objects. (Herediscretemeans consisting of distinct or unconnected

elements.) The kinds of problems solved using discrete mathematics include:

� How many ways are there to choose a valid password on a computer system?

� What is the probability of winning a lottery?

� Is there a link between two computers in a network?

� How can I identify spam e-mail messages?

� How can I encrypt a message so that no unintended recipient can read it?

� What is the shortest path between two cities using a transportation system?

� How can a list of integers be sorted so that the integers are in increasing order?

� How many steps are required to do such a sorting?

� How can it be proved that a sorting algorithm correctly sorts a list?

� How can a circuit that adds two integers be designed?

� How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as these.
More generally, discrete mathematics is used whenever objects are counted, when relation-

ships between �nite (or countable) sets are studied, and when processes involving a �nite number
of steps are analyzed. A key reason for the growth in the importance of discrete mathematics is
that information is stored and manipulated by computing machines in a discrete fashion.

WHY STUDY DISCRETE MATHEMATICS? There are several important reasons for
studying discrete mathematics. First, through this course you can develop your mathematical
maturity: that is, your ability to understand and create mathematical arguments.You will not get
very far in your studies in the mathematical sciences without these skills.

Second, discrete mathematics is the gateway to more advanced courses in all parts of
the mathematical sciences. Discrete mathematics provides the mathematical foundations for
many computer science courses including data structures, algorithms, database theory, automata
theory, formal languages, compiler theory, computer security, and operating systems. Students
�nd these courses much more dif�cult when they have not had the appropriate mathematical
foundations from discrete math. One student has sent me an e-mail message saying that she
used the contents of this book in every computer science course she took!

Math courses based on the material studied in discrete mathematics include logic, set theory,
number theory, linear algebra, abstract algebra, combinatorics, graph theory, and probability
theory (the discrete part of the subject).

Also, discrete mathematics contains the necessary mathematical background for solving
problems in operations research (including many discrete optimization techniques), chemistry,
engineering, biology, and so on. In the text, we will study applications to some of these areas.

Many students �nd their introductory discrete mathematics course to be signi�cantly more
challenging than courses they have previously taken. One reason for this is that one of the
primary goals of this course is to teach mathematical reasoning and problem solving, rather
than a discrete set of skills. The exercises in this book are designed to re�ect this goal. Although
there are plenty of exercises in this text similar to those addressed in the examples, a large
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percentage of the exercises require original thought. This is intentional. The material discussed
in the text provides the tools needed to solve these exercises, but your job is to successfully
apply these tools using your own creativity. One of the primary goals of this course is to learn
how to attack problems that may be somewhat different from any you may have previously
seen. Unfortunately, learning how to solve only particular types of exercises is not suf�cient for
success in developing the problem-solving skills needed in subsequent courses and professional
work. This text addresses many different topics, but discrete mathematics is an extremely diverse
and large area of study. One of my goals as an author is to help you develop the skills needed
to master the additional material you will need in your own future pursuits.

THE EXERCISES I would like to offer some advice about how you can best learn discrete
mathematics (and other subjects in the mathematical and computing sciences).You will learn the
most by actively working exercises. I suggest that you solve as many as you possibly can. After
working the exercises your instructor has assigned, I encourage you to solve additional exercises
such as those in the exercise sets following each section of the text and in the supplementary
exercises at the end of each chapter. (Note the key explaining the markings preceding exercises.)

Key to the Exercises

no marking A routine exercise
� A dif�cult exercise
�� An extremely challenging exercise

An exercise containing a result used in the book (Table 1 on the
following page shows where these exercises are used.)

(Requires calculus) An exercise whose solution requires the use of limits or concepts
from differential or integral calculus

The best approach is to try exercises yourself before you consult the answer section at the
end of this book. Note that the odd-numbered exercise answers provided in the text are answers
only and not full solutions; in particular, the reasoning required to obtain answers is omitted in
these answers. TheStudent’s Solutions Guide, available separately, provides complete, worked
solutions to all odd-numbered exercises in this text. When you hit an impasse trying to solve an
odd-numbered exercise, I suggest you consult theStudent’s Solutions Guideand look for some
guidance as to how to solve the problem. The more work you do yourself rather than passively
reading or copying solutions, the more you will learn. The answers and solutions to the even-
numbered exercises are intentionally not available from the publisher; ask your instructor if you
have trouble with these.

WEB RESOURCES You arestrongly encouraged to take advantage of additional re-
sources available on the Web, especially those on the companion website for this book found
at www.mhhe.com/rosen. You will �nd many Extra Examples designed to clarify key concepts;
Self Assessments for gauging how well you understand core topics; Interactive Demonstration
Applets exploring key algorithms and other concepts; a Web Resources Guide containing an
extensive selection of links to external sites relevant to the world of discrete mathematics; extra
explanations and practice to help you master core concepts; added instruction on writing proofs
and on avoiding common mistakes in discrete mathematics; in-depth discussions of important
applications; and guidance on utilizing MapleTM software to explore the computational aspects
of discrete mathematics. Places in the text where these additional online resources are available
are identi�ed in the margins by special icons. You will also �nd (after fall 2012) theVirtual
Discrete Mathematics Tutor, an on-line resource that provides extra support to help you make
the transition from lower level courses to discrete mathematics. This tutorial should help answer
many of your questions and correct errors that you may make, based on errors other students
using this book, have made. For more details on these and other online resources, see the
description of the companion website immediately preceding this “To the Student” message.
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TABLE 1 Hand-Icon Exercises and Where They Are Used

Section Exercise Section Where Used Pages Where Used

1.1 40 1.3 31

1.1 41 1.3 31

1.3 9 1.6 71

1.3 10 1.6 70, 71

1.3 15 1.6 71

1.3 30 1.6 71, 74

1.3 42 12.2 820

1.7 16 1.7 86

2.3 72 2.3 144

2.3 79 2.5 170

2.5 15 2.5 174

2.5 16 2.5 173

3.1 43 3.1 197

3.2 72 11.2 761

4.2 36 4.2 270

4.3 37 4.1 239

4.4 2 4.6 301

4.4 44 7.2 464

6.4 17 7.2 466

6.4 21 7.4 480

7.2 15 7.2 466

9.1 26 9.4 598

10.4 59 11.1 747

11.1 15 11.1 750

11.1 30 11.1 755

11.1 48 11.2 762

12.1 12 12.3 825

A.2 4 8.3 531

THE VALUE OF THIS BOOK My intention is to make your substantial investment in
this text an excellent value. The book, the associated ancillaries, and companion website have
taken many years of effort to develop and re�ne. I am con�dent that most of you will �nd that
the text and associated materials will help you master discrete mathematics, just as so many
previous students have. Even though it is likely that you will not cover some chapters in your
current course, you should �nd it helpful—as many other students have—to read the relevant
sections of the book as you take additional courses. Most of you will return to this book as a
useful tool throughout your future studies, especially for those of you who continue in computer
science, mathematics, and engineering. I have designed this book to be a gateway for future
studies and explorations, and to be comprehensive reference, and I wish you luck as you begin
your journey.

Kenneth H. Rosen
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T he rules of logic specify the meaning of mathematical statements. For instance, these rules
help us understand and reason with statements such as ÒThere exists an integer that is

not the sum of two squaresÓ and ÒFor every positive integern, the sum of the positive integers
not exceedingn is n(n + 1)/2.Ó Logic is the basis of all mathematical reasoning, and of all
automated reasoning. It has practical applications to the design of computing machines, to the
speciÞcation of systems, to artiÞcial intelligence, to computer programming, to programming
languages, and to other areas of computer science, as well as to many other Þelds of study.

To understand mathematics, we must understand what makes up a correct mathematical
argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem.A
collection of theorems on a topic organize what we know about this topic.To learn a mathematical
topic, a person needs to actively construct mathematical arguments on this topic, and not just
read exposition. Moreover, knowing the proof of a theorem often makes it possible to modify
the result to Þt new situations.

Everyone knows that proofs are important throughout mathematics, but many people Þnd
it surprising how important proofs are in computer science. In fact, proofs are used to verify
that computer programs produce the correct output for all possible input values, to show that
algorithms always produce the correct result, to establish the security of a system, and to create
artiÞcial intelligence. Furthermore, automated reasoning systems have been created to allow
computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-
duce tools to construct these arguments. We will develop an arsenal of different proof methods
that will enable us to prove many different types of results. After introducing many different
methods of proof, we will introduce several strategies for constructing proofs. We will intro-
duce the notion of a conjecture and explain the process of developing mathematics by studying
conjectures.

1.1 Propositional Logic

Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. Because a major goal of this book
is to teach the reader how to understand and how to construct correct mathematical arguments,
we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-
ous applications to computer science. These rules are used in the design of computer circuits,
the construction of computer programs, the veriÞcation of the correctness of programs, and in
many other ways. Furthermore, software systems have been developed for constructing some,
but not all, types of proofs automatically. We will discuss these applications of logic in this and
later chapters.

1
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Propositions

Our discussion begins with an introduction to the basic building blocks of logicÑpropositions.
A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true
or false, but not both.

EXAMPLE 1 All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.
2. Toronto is the capital of Canada.
3. 1+ 1 = 2.
4. 2+ 2 = 3.

Propositions 1 and 3 are true, whereas 2 and 4 are false. �

Some sentences that are not propositions are given in Example 2.

EXAMPLE 2 Consider the following sentences.

1. What time is it?
2. Read this carefully.
3. x + 1 = 2.
4. x + y = z.

Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3
and 4 are not propositions because they are neither true nor false. Note that each of sentences 3
and 4 can be turned into a proposition if we assign values to the variables. We will also discuss
other ways to turn sentences such as these into propositions in Section 1.4. �

We use letters to denotepropositional variables (or statement variables), that is, vari-
ables that represent propositions, just as letters are used to denote numerical variables. The

ARISTOTLE (384b.c.e.Ð322b.c.e.) Aristotle was born in Stagirus (Stagira) in northern Greece. His father was
the personal physician of the King of Macedonia. Because his father died when Aristotle was young, Aristotle
could not follow the custom of following his fatherÕs profession. Aristotle became an orphan at a young age
when his mother also died. His guardian who raised him taught him poetry, rhetoric, and Greek. At the age of
17, his guardian sent him to Athens to further his education. Aristotle joined PlatoÕs Academy, where for 20
years he attended PlatoÕs lectures, later presenting his own lectures on rhetoric. When Plato died in 347B.C.E.,
Aristotle was not chosen to succeed him because his views differed too much from those of Plato. Instead,
Aristotle joined the court of King Hermeas where he remained for three years, and married the niece of the
King. When the Persians defeated Hermeas, Aristotle moved to Mytilene and, at the invitation of King Philip

of Macedonia, he tutored Alexander, PhilipÕs son, who later became Alexander the Great. Aristotle tutored Alexander for Þve years
and after the death of King Philip, he returned to Athens and set up his own school, called the Lyceum.

AristotleÕs followers were called the peripatetics, which means Òto walk about,Ó because Aristotle often walked around as he
discussed philosophical questions. Aristotle taught at the Lyceum for 13 years where he lectured to his advanced students in the
morning and gave popular lectures to a broad audience in the evening. WhenAlexander the Great died in 323B.C.E., a backlash against
anything related to Alexander led to trumped-up charges of impiety against Aristotle. Aristotle ßed to Chalcis to avoid prosecution.
He only lived one year in Chalcis, dying of a stomach ailment in 322B.C.E.

Aristotle wrote three types of works: those written for a popular audience, compilations of scientiÞc facts, and systematic
treatises. The systematic treatises included works on logic, philosophy, psychology, physics, and natural history. AristotleÕs writings
were preserved by a student and were hidden in a vault where a wealthy book collector discovered them about 200 years later. They
were taken to Rome, where they were studied by scholars and issued in new editions, preserving them for posterity.
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conventional letters used for propositional variables arep, q, r, s, . . . . The truth value of a
proposition is true, denoted by T, if it is a true proposition, and the truth value of a proposition
is false, denoted by F, if it is a false proposition.

The area of logic that deals with propositions is called thepropositional calculusor propo-
sitional logic. It was Þrst developed systematically by the Greek philosopher Aristotle more
than 2300 years ago.

We now turn our attention to methods for producing new propositions from those that
we already have. These methods were discussed by the English mathematician George Boole
in 1854 in his bookThe Laws of Thought.Many mathematical statements are constructed by
combining one or more propositions. New propositions, calledcompound propositions, are
formed from existing propositions using logical operators.

DEFINITION 1 Letp be a proposition. Thenegation ofp, denoted by¬p (also denoted byp), is the statement

ÒIt is not the case thatp.Ó

The proposition¬p is read Ònotp.Ó The truth value of the negation ofp, ¬p , is the opposite
of the truth value ofp.

EXAMPLE 3 Find the negation of the proposition

ÒMichaelÕs PC runs LinuxÓ

and express this in simple English.

Solution:The negation is

ÒIt is not the case that MichaelÕs PC runs Linux.Ó

This negation can be more simply expressed as

ÒMichaelÕs PC does not run Linux.Ó

�

EXAMPLE 4 Find the negation of the proposition

ÒVandanaÕs smartphone has at least 32GB of memoryÓ

and express this in simple English.

Solution:The negation is

ÒIt is not the case that VandanaÕs smartphone has at least 32GB of memory.Ó

This negation can also be expressed as

ÒVandanaÕs smartphone does not have at least 32GB of memoryÓ

or even more simply as

ÒVandanaÕs smartphone has less than 32GB of memory.Ó

�
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TABLE 1 The
Truth Table for
the Negation of a
Proposition.

p ¬p

T F
F T

Table 1 displays thetruth table for the negation of a propositionp. This table has a row
for each of the two possible truth values of a propositionp. Each row shows the truth value of
¬p corresponding to the truth value ofp for this row.

The negation of a proposition can also be considered the result of the operation of the
negation operatoron a proposition. The negation operator constructs a new proposition from
a single existing proposition. We will now introduce the logical operators that are used to form
new propositions from two or more existing propositions. These logical operators are also called
connectives.

DEFINITION 2 Letp andq be propositions. Theconjunctionof p andq, denoted byp � q, is the proposition
Òpandq.Ó The conjunctionp � q is true when bothp andq are true and is false otherwise.

Table 2 displays the truth table ofp � q. This table has a row for each of the four possible
combinations of truth values ofp andq. The four rows correspond to the pairs of truth values
TT, TF, FT, and FF, where the Þrst truth value in the pair is the truth value ofp and the second
truth value is the truth value ofq.

Note that in logic the word ÒbutÓ sometimes is used instead of ÒandÓ in a conjunction. For
example, the statement ÒThe sun is shining, but it is rainingÓ is another way of saying ÒThe sun
is shining and it is raining.Ó (In natural language, there is a subtle difference in meaning between
ÒandÓ and ÒbutÓ; we will not be concerned with this nuance here.)

EXAMPLE 5 Find the conjunction of the propositionsp andq wherep is the proposition ÒRebeccaÕs PC has
more than 16 GB free hard disk spaceÓ andq is the proposition ÒThe processor in RebeccaÕs
PC runs faster than 1 GHz.Ó

Solution:The conjunction of these propositions,p � q, is the proposition ÒRebeccaÕs PC has
more than 16 GB free hard disk space, and the processor in RebeccaÕs PC runs faster than 1
GHz.Ó This conjunction can be expressed more simply as ÒRebeccaÕs PC has more than 16 GB
free hard disk space, and its processor runs faster than 1 GHz.Ó For this conjunction to be true,
both conditions given must be true. It is false, when one or both of these conditions are false.�

DEFINITION 3 Let p andq be propositions. Thedisjunctionof p andq, denoted byp � q, is the proposition
Òpor q.Ó The disjunctionp � q is false when bothp andq are false and is true otherwise.

Table 3 displays the truth table forp � q.

TABLE 2 The Truth Table for
the Conjunction of Two
Propositions.

p q p � q

T T T
T F F
F T F
F F F

TABLE 3 The Truth Table for
the Disjunction of Two
Propositions.

p q p � q

T T T
T F T
F T T
F F F
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The use of the connectiveor in a disjunction corresponds to one of the two ways the word
or is used in English, namely, as aninclusive or. A disjunction is true when at least one of the
two propositions is true. For instance, the inclusive or is being used in the statement

ÒStudents who have taken calculus or computer science can take this class.Ó

Here, we mean that students who have taken both calculus and computer science can take the
class, as well as the students who have taken only one of the two subjects. On the other hand,
we are using theexclusive orwhen we say

ÒStudents who have taken calculus or computer science, but not both, can enroll in this
class.Ó

Here, we mean that students who have taken both calculus and a computer science course cannot
take the class. Only those who have taken exactly one of the two courses can take the class.

Similarly, when a menu at a restaurant states, ÒSoup or salad comes with an entrŽe,Ó the
restaurant almost always means that customers can have either soup or salad, but not both.
Hence, this is an exclusive, rather than an inclusive, or.

EXAMPLE 6 What is the disjunction of the propositionsp andq wherep andq are the same propositions as
in Example 5?

Solution:The disjunction ofp andq, p � q, is the proposition

ÒRebeccaÕs PC has at least 16 GB free hard disk space, or the processor in RebeccaÕs PC
runs faster than 1 GHz.Ó

This proposition is true when RebeccaÕs PC has at least 16 GB free hard disk space, when the
PCÕs processor runs faster than 1 GHz, and when both conditions are true. It is false when both
of these conditions are false, that is, when RebeccaÕs PC has less than 16 GB free hard disk
space and the processor in her PC runs at 1 GHz or slower. �

As was previously remarked, the use of the connectiveor in a disjunction corresponds
to one of the two ways the wordor is used in English, namely, in an inclusive way. Thus, a
disjunction is true when at least one of the two propositions in it is true. Sometimes, we useor
in an exclusive sense. When the exclusive or is used to connect the propositionsp andq, the
proposition Òpor q (but not both)Ó is obtained. This proposition is true whenp is true andq is
false, and whenp is false andq is true. It is false when bothp andq are false and when both
are true.

GEORGE BOOLE (1815Ð1864)George Boole, the son of a cobbler, was born in Lincoln, England, in
November 1815. Because of his familyÕs difÞcult Þnancial situation, Boole struggled to educate himself while
supporting his family. Nevertheless, he became one of the most important mathematicians of the 1800s.Although
he considered a career as a clergyman, he decided instead to go into teaching, and soon afterward opened a
school of his own. In his preparation for teaching mathematics, BooleÑunsatisÞed with textbooks of his dayÑ
decided to read the works of the great mathematicians. While reading papers of the great French mathematician
Lagrange, Boole made discoveries in the calculus of variations, the branch of analysis dealing with Þnding
curves and surfaces by optimizing certain parameters.

In 1848 Boole publishedThe MathematicalAnalysis of Logic, the Þrst of his contributions to symbolic logic.
In 1849 he was appointed professor of mathematics at QueenÕs College in Cork, Ireland. In 1854 he publishedThe Laws of Thought,
his most famous work. In this book, Boole introduced what is now calledBoolean algebrain his honor. Boole wrote textbooks
on differential equations and on difference equations that were used in Great Britain until the end of the nineteenth century. Boole
married in 1855; his wife was the niece of the professor of Greek at QueenÕs College. In 1864 Boole died from pneumonia, which
he contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.
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TABLE 4 The Truth Table for
the Exclusive Or of Two
Propositions.

p q p � q

T T F
T F T
F T T
F F F

TABLE 5 The Truth Table for
the Conditional Statement
p � q.

p q p � q

T T T
T F F
F T T
F F T

DEFINITION 4 Letp andq be propositions. Theexclusive orof p andq, denoted byp � q, is the proposition
that is true when exactly one ofp andq is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.

Conditional Statements

We will discuss several other important ways in which propositions can be combined.

DEFINITION 5 Let p andq be propositions. Theconditional statementp � q is the proposition Òifp, then
q.Ó The conditional statementp � q is false whenp is true andq is false, and true otherwise.
In the conditional statementp � q, p is called thehypothesis(or antecedentor premise)
andq is called theconclusion(or consequence).

The statementp � q is called a conditional statement becausep � q asserts thatq is true
on the condition thatp holds. A conditional statement is also called animplication.

The truth table for the conditional statementp � q is shown in Table 5. Note that the
statementp � q is true when bothp andq are true and whenp is false (no matter what truth
valueq has).

Because conditional statements play such an essential role in mathematical reasoning, a
variety of terminology is used to expressp � q. You will encounter most if not all of the
following ways to express this conditional statement:

Òifp, thenqÓ Òp impliesqÓ
Òifp, qÓ Òp only if qÓ
Òpis sufÞcient forqÓ Òa sufÞcient condition forq is pÓ
Òqif pÓ Òq wheneverpÓ
ÒqwhenpÓ Òq is necessary forpÓ
Òa necessary condition forp is qÓ Òq follows frompÓ
Òqunless¬p Ó

A useful way to understand the truth value of a conditional statement is to think of an
obligation or a contract. For example, the pledge many politicians make when running for ofÞce
is

ÒIf I am elected, then I will lower taxes.Ó
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If the politician is elected, voters would expect this politician to lower taxes. Furthermore, if the
politician is not elected, then voters will not have any expectation that this person will lower
taxes, although the person may have sufÞcient inßuence to cause those in power to lower taxes.
It is only when the politician is elected but does not lower taxes that voters can say that the
politician has broken the campaign pledge. This last scenario corresponds to the case whenp
is true butq is false inp � q.

Similarly, consider a statement that a professor might make:

ÒIf you get 100% on the Þnal, then you will get an A.Ó

If you manage to get a 100% on the Þnal, then you would expect to receive an A. If you do not
get 100% you may or may not receive an A depending on other factors. However, if you do get
100%, but the professor does not give you an A, you will feel cheated.

Of the various ways to express the conditional statementp � q, the two that seem to cause
the most confusion are Òponly if qÓ and Òqunless¬p .Ó Consequently, we will provide some
guidance for clearing up this confusion.

To remember that Òponly if qÓ expresses the same thing as Òifp, thenq,Ó note that Òponly
if qÓ says thatp cannot be true whenq is not true. That is, the statement is false ifp is true,
butq is false. Whenp is false,q may be either true or false, because the statement says nothing
about the truth value ofq. Be careful not to use Òqonly if pÓ to expressp � q because this is
incorrect. To see this, note that the true values of Òqonly if pÓ andp � q are different when
p andq have different truth values.

You might have trouble
understanding how
ÒunlessÓ is used in
conditional statements
unless you read this
paragraph carefully.

To remember that Òqunless¬p Ó expresses the same conditional statement as Òifp, then
q,Ó note that Òqunless¬p Ó means that if¬p is false, thenq must be true. That is, the statement
Òqunless¬p Ó is false whenp is true butq is false, but it is true otherwise. Consequently,
Òqunless¬p Ó andp � q always have the same truth value.

We illustrate the translation between conditional statements and English statements in Ex-
ample 7.

EXAMPLE 7 Let p be the statement ÒMaria learns discrete mathematicsÓ andq the statement ÒMaria will
Þnd a good job.Ó Express the statementp � q as a statement in English.

Solution:From the deÞnition of conditional statements, we see that whenp is the statement
ÒMaria learns discrete mathematicsÓ andq is the statement ÒMaria will Þnd a good job,Óp � q
represents the statement

ÒIf Maria learns discrete mathematics, then she will Þnd a good job.Ó

There are many other ways to express this conditional statement in English. Among the most
natural of these are:

ÒMaria will Þnd a good job when she learns discrete mathematics.Ó

ÒFor Maria to get a good job, it is sufÞcient for her to learn discrete mathematics.Ó

and

ÒMaria will Þnd a good job unless she does not learn discrete mathematics.Ó

�

Note that the way we have deÞned conditional statements is more general than the meaning
attached to such statements in the English language. For instance, the conditional statement in
Example 7 and the statement

ÒIf it is sunny, then we will go to the beach.Ó

are statements used in normal language where there is a relationship between the hypothesis
and the conclusion. Further, the Þrst of these statements is true unless Maria learns discrete
mathematics, but she does not get a good job, and the second is true unless it is indeed sunny,
but we do not go to the beach. On the other hand, the statement
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ÒIf Juan has a smartphone, then 2+ 3 = 5Ó

is true from the deÞnition of a conditional statement, because its conclusion is true. (The truth
value of the hypothesis does not matter then.) The conditional statement

ÒIf Juan has a smartphone, then 2+ 3 = 6Ó

is true if Juan does not have a smartphone, even though 2+ 3 = 6 is false. We would not use
these last two conditional statements in natural language (except perhaps in sarcasm), because
there is no relationship between the hypothesis and the conclusion in either statement. In math-
ematical reasoning, we consider conditional statements of a more general sort than we use in
English. The mathematical concept of a conditional statement is independent of a cause-and-
effect relationship between hypothesis and conclusion. Our deÞnition of a conditional statement
speciÞes its truth values; it is not based on English usage. Propositional language is an artiÞcial
language; we only parallel English usage to make it easy to use and remember.

The if-then construction used in many programming languages is different from that used
in logic. Most programming languages contain statements such asif p then S, wherep is a
proposition andSis a program segment (one or more statements to be executed).When execution
of a program encounters such a statement,S is executed ifp is true, butS is not executed ifp
is false, as illustrated in Example 8.

EXAMPLE 8 What is the value of the variablex after the statement

if 2 + 2 = 4 then x := x + 1

if x = 0 before this statement is encountered? (The symbol:= stands for assignment. The
statementx := x + 1 means the assignment of the value ofx + 1 to x.)

Solution:Because 2+ 2 = 4 is true, the assignment statementx := x + 1 is executed. Hence,
x has the value 0+ 1 = 1 after this statement is encountered. �

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional
statements starting with a conditional statementp � q. In particular, there are three related
conditional statements that occur so often that they have special names. The propositionq � p
is called theconverseof p � q. Thecontrapositive of p � q is the proposition¬q � ¬ p.
The proposition¬p � ¬ q is called theinverse of p � q. We will see that of these three
conditional statements formed fromp � q, only the contrapositive always has the same truth
value asp � q.

We Þrst show that the contrapositive,¬q � ¬ p, of a conditional statementp � q always
has the same truth value asp � q. To see this, note that the contrapositive is false only when
¬p is false and¬q is true, that is, only whenp is true andq is false. We now show that neither
the converse,q � p, nor the inverse,¬p � ¬ q, has the same truth value asp � q for all
possible truth values ofp andq. Note that whenp is true andq is false, the original conditional
statement is false, but the converse and the inverse are both true.

Remember that the
contrapositive, but neither
the converse or inverse, of
a conditional statement is
equivalent to it.

When two compound propositions always have the same truth value we call themequiv-
alent, so that a conditional statement and its contrapositive are equivalent. The converse and
the inverse of a conditional statement are also equivalent, as the reader can verify, but neither is
equivalent to the original conditional statement. (We will study equivalent propositions in Sec-
tion 1.3.) Take note that one of the most common logical errors is to assume that the converse
or the inverse of a conditional statement is equivalent to this conditional statement.

We illustrate the use of conditional statements in Example 9.
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EXAMPLE 9 What are the contrapositive, the converse, and the inverse of the conditional statement

ÒThe home team wins whenever it is raining?Ó

Solution: Because ÒqwheneverpÓ is one of the ways to express the conditional statement
p � q, the original statement can be rewritten as

ÒIf it is raining, then the home team wins.Ó

Consequently, the contrapositive of this conditional statement is

ÒIf the home team does not win, then it is not raining.Ó

The converse is

ÒIf the home team wins, then it is raining.Ó

The inverse is

ÒIf it is not raining, then the home team does not win.Ó

Only the contrapositive is equivalent to the original statement. �

BICONDITIONALS We now introduce another way to combine propositions that expresses
that two propositions have the same truth value.

DEFINITION 6 Let p andq be propositions. Thebiconditional statementp � q is the proposition Òpif
and only ifq.Ó The biconditional statementp � q is true whenp andq have the same truth
values, and is false otherwise. Biconditional statements are also calledbi-implications.

The truth table forp � q is shown in Table 6. Note that the statementp � q is true when both
the conditional statementsp � q andq � p are true and is false otherwise. That is why we use
the words Òif and only ifÓ to express this logical connective and why it is symbolically written
by combining the symbols� and�. There are some other common ways to expressp � q:

Òpis necessary and sufÞcient forqÓ
Òifp thenq, and converselyÓ
Òpiff q.Ó

The last way of expressing the biconditional statementp � q uses the abbreviation ÒiffÓ for
Òif and only if.Ó Note thatp � q has exactly the same truth value as(p � q) � (q � p).

TABLE 6 The Truth Table for the
Biconditional p � q.

p q p � q

T T T
T F F
F T F
F F T
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EXAMPLE 10 Let p be the statement ÒYou can take the ßight,Ó and letq be the statement ÒYou buy a ticket.Ó
Thenp � q is the statement

ÒYou can take the ßight if and only if you buy a ticket.Ó

This statement is true ifp andq are either both true or both false, that is, if you buy a ticket and
can take the ßight or if you do not buy a ticket and you cannot take the ßight. It is false when
p andq have opposite truth values, that is, when you do not buy a ticket, but you can take the
ßight (such as when you get a free trip) and when you buy a ticket but you cannot take the ßight
(such as when the airline bumps you). �

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not
always explicit in natural language. In particular, the Òif and only ifÓ construction used in
biconditionals is rarely used in common language. Instead, biconditionals are often expressed
using an Òif, thenÓ or an Òonly ifÓ construction. The other part of the Òif and only ifÓ is implicit.
That is, the converse is implied, but not stated. For example, consider the statement in English
ÒIf you Þnish your meal, then you can have dessert.Ó What is really meant is ÒYou can have
dessert if and only if you Þnish your meal.Ó This last statement is logically equivalent to the
two statements ÒIf you Þnish your meal, then you can have dessertÓ and ÒYou can have dessert
only if you Þnish your meal.Ó Because of this imprecision in natural language, we need to
make an assumption whether a conditional statement in natural language implicitly includes its
converse. Because precision is essential in mathematics and in logic, we will always distinguish
between the conditional statementp � q and the biconditional statementp � q.

Truth Tables of Compound Propositions

We have now introduced four important logical connectivesÑconjunctions, disjunctions, con-
ditional statements, and biconditional statementsÑas well as negations. We can use these con-
nectives to build up complicated compound propositions involving any number of propositional
variables. We can use truth tables to determine the truth values of these compound propositions,
as Example 11 illustrates. We use a separate column to Þnd the truth value of each compound
expression that occurs in the compound proposition as it is built up. The truth values of the
compound proposition for each combination of truth values of the propositional variables in it
is found in the Þnal column of the table.

EXAMPLE 11 Construct the truth table of the compound proposition

(p � ¬ q) � (p � q).

Solution:Because this truth table involves two propositional variablesp andq, there are four
rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. The Þrst
two columns are used for the truth values ofp andq, respectively. In the third column we Þnd
the truth value of¬q , needed to Þnd the truth value ofp � ¬ q, found in the fourth column. The
Þfth column gives the truth value ofp � q. Finally, the truth value of(p � ¬ q) � (p � q) is
found in the last column. The resulting truth table is shown in Table 7. �

TABLE 7 The Truth Table of (p � ¬ q) � (p � q).

p q ¬q p � ¬ q p � q (p � ¬ q) � (p � q)

T T F T T T
T F T T F F
F T F F F T
F F T T F F
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Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical operators
deÞned so far. We will generally use parentheses to specify the order in which logical operators
in a compound proposition are to be applied. For instance,(p � q) � (¬r) is the conjunction
of p � q and¬r . However, to reduce the number of parentheses, we specify that the negation
operator is applied before all other logical operators. This means that¬p � q is the conjunction
of ¬p andq, namely,(¬p) � q, not the negation of the conjunction ofp andq, namely¬(p � q).

Another general rule of precedence is that the conjunction operator takes precedence over
the disjunction operator, so thatp � q � r means(p � q) � r rather thanp � (q � r) . Because
this rule may be difÞcult to remember, we will continue to use parentheses so that the order of
the disjunction and conjunction operators is clear.

TABLE 8
Precedence of
Logical Operators.

Operator Precedence

¬ 1

� 2
� 3

� 4
� 5 Finally, it is an accepted rule that the conditional and biconditional operators� and�

have lower precedence than the conjunction and disjunction operators,� and�. Consequently,
p � q � r is the same as(p � q) � r . We will use parentheses when the order of the con-
ditional operator and biconditional operator is at issue, although the conditional operator has
precedence over the biconditional operator. Table 8 displays the precedence levels of the logical
operators,¬, �, �, �, and �.

Logic and Bit Operations

Computers represent information using bits. Abit is a symbol with two possible values, namely,
0 (zero) and 1 (one). This meaning of the word bit comes frombinary digit, because zeros and
ones are the digits used in binary representations of numbers. The well-known statistician John
Tukey introduced this terminology in 1946. A bit can be used to represent a truth value, because
there are two truth values, namely,trueandfalse. As is customarily done, we will use a 1 bit to
represent true and a 0 bit to represent false. That is, 1 represents T (true), 0 represents F (false).A
variable is called aBoolean variableif its value is either true or false. Consequently, a Boolean
variable can be represented using a bit.

Truth Value Bit

T 1
F 0

Computerbit operations correspond to the logical connectives. By replacing true by a one
and false by a zero in the truth tables for the operators�, �, and �, the tables shown in Table 9
for the corresponding bit operations are obtained. We will also use the notationOR,AND, and
XORfor the operators�, �, and �, as is done in various programming languages.

JOHN WILDER TUKEY (1915Ð2000) Tukey, born in New Bedford, Massachusetts, was an only child. His
parents, both teachers, decided home schooling would best develop his potential. His formal education began
at Brown University, where he studied mathematics and chemistry. He received a masterÕs degree in chemistry
from Brown and continued his studies at Princeton University, changing his Þeld of study from chemistry to
mathematics. He received his Ph.D. from Princeton in 1939 for work in topology, when he was appointed an
instructor in mathematics at Princeton. With the start of World War II, he joined the Fire Control Research OfÞce,
where he began working in statistics. Tukey found statistical research to his liking and impressed several leading
statisticians with his skills. In 1945, at the conclusion of the war, Tukey returned to the mathematics department
at Princeton as a professor of statistics, and he also took a position at AT&T Bell Laboratories. Tukey founded

the Statistics Department at Princeton in 1966 and was its Þrst chairman. Tukey made signiÞcant contributions to many areas of
statistics, including the analysis of variance, the estimation of spectra of time series, inferences about the values of a set of parameters
from a single experiment, and the philosophy of statistics. However, he is best known for his invention, with J. W. Cooley, of the fast
Fourier transform. In addition to his contributions to statistics, Tukey was noted as a skilled wordsmith; he is credited with coining
the termsbit andsoftware.

Tukey contributed his insight and expertise by serving on the PresidentÕs Science Advisory Committee. He chaired several
important committees dealing with the environment, education, and chemicals and health. He also served on committees working
on nuclear disarmament. Tukey received many awards, including the National Medal of Science.

HISTORICAL NOTE There were several other suggested words for a binary digit, includingbinit andbigit, that never were widely
accepted. The adoption of the wordbit may be due to its meaning as a common English word. For an account of TukeyÕs coining
of the wordbit, see the April 1984 issue ofAnnals of the History of Computing.
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TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

x y x � y x � y x � y

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

DEFINITION 7 A bit string is a sequence of zero or more bits. Thelengthof this string is the number of bits
in the string.

EXAMPLE 12 101010011 is a bit string of length nine. �

We can extend bit operations to bit strings. We deÞne thebitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits theOR,
AND, andXORof the corresponding bits in the two strings, respectively. We use the symbols
�, �, and � to represent the bitwiseOR, bitwiseAND, and bitwiseXORoperations, respectively.
We illustrate bitwise operations on bit strings with Example 13.

EXAMPLE 13 Find the bitwiseOR, bitwiseAND, and bitwiseXOR of the bit strings 01 1011 0110 and
11 0001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Solution:The bitwiseOR, bitwiseAND, and bitwiseXORof these strings are obtained by taking
theOR,AND, andXORof the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111 bitwiseOR
01 0001 0100 bitwiseAND
10 1010 1011 bitwiseXOR �

Exercises

1. Which of these sentences are propositions? What are the
truth values of those that are propositions?
a) Boston is the capital of Massachusetts.
b) Miami is the capital of Florida.
c) 2 + 3 = 5.
d) 5 + 7 = 10.
e) x + 2 = 11.
f ) Answer this question.

2. Which of these are propositions?What are the truth values
of those that are propositions?
a) Do not pass go.
b) What time is it?
c) There are no black ßies in Maine.

d) 4 + x = 5.
e) The moon is made of green cheese.
f ) 2n � 100.

3. What is the negation of each of these propositions?
a) Mei has an MP3 player.
b) There is no pollution in New Jersey.
c) 2 + 1 = 3.
d) The summer in Maine is hot and sunny.

4. What is the negation of each of these propositions?
a) Jennifer and Teja are friends.
b) There are 13 items in a bakerÕs dozen.
c) Abby sent more than 100 text messages every day.
d) 121 is a perfect square.
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5. What is the negation of each of these propositions?
a) Steve has more than 100 GB free disk space on his

laptop.
b) Zach blocks e-mails and texts from Jennifer.
c) 7 · 11· 13 = 999.
d) Diane rode her bicycle 100 miles on Sunday.

6. Suppose that SmartphoneA has 256 MB RAM and 32 GB
ROM, and the resolution of its camera is 8 MP; Smart-
phone B has 288 MB RAM and 64 GB ROM, and the
resolution of its camera is 4 MP; and Smartphone C has
128 MB RAM and 32 GB ROM, and the resolution of
its camera is 5 MP. Determine the truth value of each of
these propositions.
a) Smartphone B has the most RAM of these three smart-

phones.
b) Smartphone C has more ROM or a higher resolution

camera than Smartphone B.
c) Smartphone B has more RAM, more ROM, and a

higher resolution camera than Smartphone A.
d) If Smartphone B has more RAM and more ROM than

Smartphone C, then it also has a higher resolution
camera.

e) Smartphone A has more RAM than Smartphone B if
and only if Smartphone B has more RAM than Smart-
phone A.

7. Suppose that during the most recent Þscal year, the an-
nual revenue of Acme Computer was 138 billion dollars
and its net proÞt was 8 billion dollars, the annual revenue
of Nadir Software was 87 billion dollars and its net proÞt
was 5 billion dollars, and the annual revenue of Quixote
Media was 111 billion dollars and its net proÞt was
13 billion dollars. Determine the truth value of each of
these propositions for the most recent Þscal year.
a) Quixote Media had the largest annual revenue.
b) Nadir Software had the lowest net proÞt and Acme

Computer had the largest annual revenue.
c) Acme Computer had the largest net proÞt or Quixote

Media had the largest net proÞt.
d) If Quixote Media had the smallest net proÞt, then

Acme Computer had the largest annual revenue.
e) Nadir Software had the smallest net proÞt if and only

if Acme Computer had the largest annual revenue.
8. Let p andq be the propositions

p : I bought a lottery ticket this week.
q : I won the million dollar jackpot.

Express each of these propositions as an English sen-
tence.
a) ¬p b) p � q c) p � q
d) p � q e) p � q f ) ¬p � ¬ q
g) ¬p � ¬ q h) ¬p � (p � q)

9. Let p andq bethepropositions ÒSwimming at the New
Jersey shore is allowedÓ and ÒSharks have been spotted
near the shore,Ó respectively. Express each of these com-
pound propositions as an English sentence.
a) ¬q b) p � q c) ¬p � q
d) p � ¬ q e) ¬q � p f ) ¬p � ¬ q
g) p � ¬ q h) ¬p � (p � ¬ q)

10. Let p andq be the propositions ÒThe election is decidedÓ
and ÒThe votes have been counted,Ó respectively. Express
each of these compound propositions as an English sen-
tence.
a) ¬p b) p � q
c) ¬p � q d) q � p
e) ¬q � ¬ p f ) ¬p � ¬ q
g) p � q h) ¬q � (¬p � q)

11. Let p andq be the propositions
p : It is below freezing.
q : It is snowing.

Write these propositions usingp andq and logical con-
nectives (including negations).
a) It is below freezing and snowing.
b) It is below freezing but not snowing.
c) It is not below freezing and it is not snowing.
d) It is either snowing or below freezing (or both).
e) If it is below freezing, it is also snowing.
f ) Either it is below freezing or it is snowing, but it is

not snowing if it is below freezing.
g) That it is below freezing is necessary and sufÞcient

for it to be snowing.
12. Let p, q, andr be the propositions

p : You have the ßu.
q : You miss the Þnal examination.
r : You pass the course.

Express each of these propositions as an English sen-
tence.
a) p � q b) ¬q � r
c) q � ¬ r d) p � q � r
e) (p � ¬ r) � (q � ¬ r)
f ) (p � q) � (¬q � r)

13. Let p andq be the propositions
p : You drive over 65 miles per hour.
q : You get a speeding ticket.

Write these propositions usingp andq and logical con-
nectives (including negations).
a) You do not drive over 65 miles per hour.
b) You drive over 65 miles per hour, but you do not get

a speedingticket.
c) You will get a speeding ticket if you drive over

65 miles per hour.
d) If you do not drive over 65 miles per hour, then you

will not get a speeding ticket.
e) Driving over 65 miles per hour is sufÞcient for getting

a speeding ticket.
f ) You get a speeding ticket, but you do not drive over

65 miles per hour.
g) Whenever you get a speeding ticket, you are driving

over 65 miles per hour.
14. Let p, q, andr be the propositions

p : You get an A on the Þnal exam.
q : You do every exercise in this book.
r : You get an A in this class.

Write these propositions usingp, q, andr and logical
connectives (including negations).
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a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the Þnal, you do every exercise in this
book, and you get an A in this class.

c) To get an A in this class, it is necessary for you to get
an A on the Þnal.

d) You get an A on the Þnal, but you donÕt do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the Þnal and doing every exercise in
this book is sufÞcient for getting an A in this class.

f ) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
Þnal.

15. Let p, q, andr be the propositions
p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.

Write these propositions usingp, q, andr and logical
connectives (including negations).
a) Berries are ripe along the trail, but grizzly bears have

not been seen in the area.
b) Grizzly bears have not been seen in the area and hik-

ing on the trail is safe, but berries are ripe along the
trail.

c) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) It is not safe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) For hiking on the trail to be safe, it is necessary but not
sufÞcient that berries not be ripe along the trail and
for grizzly bears not to have been seen in the area.

f ) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

16. Determine whether these biconditionals are true or
false.
a) 2 + 2 = 4 if and only if 1+ 1 = 2.
b) 1 + 1 = 2 if and only if 2+ 3 = 4.
c) 1 + 1 = 3 if and only if monkeys can ßy.
d) 0 > 1 if and only if 2> 1.

17. Determine whether each of these conditional statements
is true or false.
a) If 1 + 1 = 2, then 2+ 2 = 5.
b) If 1 + 1 = 3, then 2+ 2 = 4.
c) If 1 + 1 = 3, then 2+ 2 = 5.
d) If monkeys can ßy, then 1+ 1 = 3.

18. Determine whether each of these conditional statements
is true or false.
a) If 1 + 1 = 3, then unicorns exist.
b) If 1 + 1 = 3, then dogs can ßy.
c) If 1 + 1 = 2, then dogs can ßy.
d) If 2 + 2 = 4, then 1+ 2 = 3.

19. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.

a) Coffee or tea comes with dinner.
b) A password must have at least three digits or be at

least eight characters long.
c) The prerequisite for the course is a course in number

theory or a course in cryptography.
d) You can pay using U.S. dollars or euros.

20. For each of these sentences, determine whether an in-
clusive or, or an exclusive or, is intended. Explain your
answer.
a) Experience with C++or Java is required.
b) Lunch includes soup or salad.
c) To enter the country you need a passport or a voter

registration card.
d) Publish or perish.

21. For each of these sentences, state what the sentence means
if the logical connective or is an inclusive or (that is, a dis-
junction) versus an exclusive or.Which of these meanings
of or do you think is intended?
a) To take discrete mathematics, you must have taken

calculus or a course in computer science.
b) When you buy a new car fromAcme Motor Company,

you get $2000 back in cash or a 2% car loan.
c) Dinnerfor two includes two items from column A or

threeitems from column B.
d) School is closed if more than 2 feet of snow falls or if

the wind chill is belowŠ100.
22. Write each of these statements in the form Òifp, thenqÓ

in English. [Hint:Refer to the list of common ways to ex-
press conditional statements provided in this section.]
a) It is necessary to wash the bossÕs car to get promoted.
b) Winds from the south imply a spring thaw.
c) A sufÞcient condition for the warranty to be good is

that you bought the computer less than a year ago.
d) Willy gets caught whenever he cheats.
e) You can access the website only if you pay a subscrip-

tion fee.
f ) Getting elected follows from knowing the right peo-

ple.
g) Carol gets seasick whenever she is on a boat.

23. Write each of these statements in the form Òifp, thenqÓ
in English. [Hint: Refer to the list of common ways to
express conditional statements.]
a) It snows whenever the wind blows from the northeast.
b) The apple trees will bloom if it stays warm for a week.
c) That the Pistons win the championship implies that

they beat the Lakers.
d) It is necessary to walk 8 miles to get to the top of

LongÕs Peak.
e) To get tenure as a professor, it is sufÞcient to be world-

famous.
f ) If you drive more than 400 miles, you will need to buy

gasoline.
g) Your guarantee is good only if you bought your CD

player less than 90 days ago.
h) Jan will go swimming unless the water is too cold.
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24. Write each of these statements in the form Òifp, thenqÓ
in English. [Hint:Refer to the list of common ways to ex-
press conditional statements provided in this section.]
a) I will remember to send you the address only if you

send me an e-mail message.
b) To be a citizen of this country, it is sufÞcient that you

were born in the United States.
c) If you keep your textbook, it will be a useful reference

in your future courses.
d) The RedWings will win the Stanley Cup if their goalie

plays well.
e) That you get the job implies that you had the best

credentials.
f ) The beach erodes whenever there is a storm.
g) It is necessary to have a valid password to log on to

the server.
h) You will reach the summit unless you begin your climb

too late.
25. Write each of these propositions in the form Òpif and

only if qÓ in English.
a) If it is hot outside you buy an ice cream cone, and if

you buy an ice cream cone it is hot outside.
b) For you to win the contest it is necessary and sufÞcient

that you have the only winning ticket.
c) You get promoted only if you have connections, and

you have connections only if you get promoted.
d) If you watch television your mind will decay, and con-

versely.
e) The trains run late on exactly those days when I take

it.
26. Write each of these propositions in the form Òpif and

only if qÓ in English.
a) For you to get an A in this course, it is necessary and

sufÞcient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

c) It rains if it is a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

27. State the converse, contrapositive, and inverse of each of
these conditional statements.
a) If it snows today, I will ski tomorrow.
b) I come to class whenever there is going to be a quiz.
c) A positive integer is a prime only if it has no divisors

other than 1 and itself.
28. State the converse, contrapositive, and inverse of each of

these conditional statements.
a) If it snows tonight, then I will stay at home.
b) I go to the beach whenever it is a sunny summer day.
c) When I stay up late, it is necessary that I sleep until

noon.
29. How many rows appear in a truth table for each of these

compound propositions?
a) p � ¬ p
b) (p � ¬ r) � (q � ¬ s)

c) q � p � ¬ s � ¬ r � ¬ t � u
d) (p � r � t) � (q � t)

30. How many rows appear in a truth table for each of these
compound propositions?
a) (q � ¬ p) � (¬p � ¬ q)
b) (p � ¬ t) � (p � ¬ s)
c) (p � r) � (¬s � ¬ t) � (¬u � v)
d) (p � r � s) � (q � t) � (r � ¬ t)

31. Construct a truth table for each of these compound propo-
sitions.
a) p � ¬ p b) p � ¬ p
c) (p � ¬ q) � q d) (p � q) � (p � q)
e) (p � q) � (¬q � ¬ p)
f ) (p � q) � (q � p)

32. Constructatruth table for each of these compound propo-
sitions.
a) p � ¬ p b) p � ¬ p
c) p � (p � q) d) (p � q) � (p � q)
e) (q � ¬ p) � (p � q)
f ) (p � q) � (p � ¬ q)

33. Construct a truth table for each of these compound propo-
sitions.
a) (p � q) � (p � q) b) (p � q) � (p � q)
c) (p � q) � (p � q) d) (p � q) � (¬p � q)
e) (p � q) � (¬p � ¬ r)
f ) (p � q) � (p � ¬ q)

34. Constructatruth table for each of these compound propo-
sitions.
a) p � p b) p � ¬ p
c) p � ¬ q d) ¬p � ¬ q
e) (p � q) � (p � ¬ q) f ) (p � q) � (p � ¬ q)

35. Construct a truth table for each of these compound propo-
sitions.
a) p � ¬ q b) ¬p � q
c) (p � q) � (¬p � q) d) (p � q) � (¬p � q)
e) (p � q) � (¬p � q)
f ) (¬p � ¬ q) � (p � q)

36. Construct atruth table for each of these compound propo-
sitions.
a) (p � q) � r b) (p � q) � r
c) (p � q) � r d) (p � q) � r
e) (p � q) � ¬ r f ) (p � q) � ¬ r

37. Construct a truth table for each of these compound propo-
sitions.
a) p � (¬q � r)
b) ¬p � (q � r)
c) (p � q) � (¬p � r)
d) (p � q) � (¬p � r)
e) (p � q) � (¬q � r)
f ) (¬p � ¬ q) � (q � r)

38. Construct atruth table for((p � q) � r) � s.

39. Construct a truth table for(p � q) � (r � s).
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40. Explain, without using a truth table, why(p � ¬ q) �
(q � ¬ r) � (r � ¬ p) is true whenp, q, andr have the
same truth value and it is false otherwise.

41. Explain, without using a truth table, why(p � q � r) �
(¬p � ¬ q � ¬ r) is true when at least one ofp, q, andr
is true and at least one is false, but is false when all three
variables have the same truth value.

42. What is the value ofx after each of these statements is
encountered in a computer program, ifx = 1 before the
statement is reached?
a) if x + 2 = 3 then x := x + 1
b) if (x + 1 = 3) OR(2x + 2 = 3) then x := x + 1
c) if (2x + 3 = 5) AND (3x + 4 = 7) then x := x + 1
d) if (x + 1 = 2) XOR(x + 2 = 3) then x := x + 1
e) if x < 2 then x := x + 1

43. Find the bitwiseOR, bitwiseAND, and bitwiseXORof
each of these pairs of bit strings.
a) 101 1110, 010 0001
b) 1111 0000, 1010 1010
c) 00 0111 0001,10 0100 1000
d) 11 1111 1111,00 0000 0000

44. Evaluate each of these expressions.
a) 1 1000� (0 1011� 1 1011)
b) (0 1111� 1 0101)� 0 1000
c) (0 1010� 1 1011)� 0 1000
d) (1 1011� 0 1010) � (1 0001� 1 1011)

Fuzzy logicis used in artiÞcial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between 0 and 1,
inclusive.A proposition with a truth value of 0 is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement ÒFred is happy,Ó

because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement ÒJohn is happy,Ó because
John is happy slightly less than half the time. Use these truth
values to solve Exercises 45Ð47.
45. The truth value of the negation of a proposition in fuzzy

logic is 1 minus the truth value of the proposition. What
are the truth values of the statements ÒFred is not happyÓ
and ÒJohn is not happy?Ó

46. The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
ÒFred and John are happyÓ and ÒNeither Fred nor John is
happy?Ó

47. The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
ÒFred is happy, or John is happyÓ and ÒFred is not happy,
or John is not happy?Ó

� 48. Is the assertion ÒThis statement is falseÓ a proposition?
� 49. Thenth statement in a list of 100 statements is ÒExactly

n of the statements in this list are false.Ó
a) What conclusions can you draw from these state-

ments?
b) Answer part (a) if thenth statement is ÒAt leastn of

the statements in this list are false.Ó
c) Answer part (b) assuming that the list contains 99

statements.
50. An ancient Sicilian legend says that the barber in a remote

town who can be reached only by traveling a dangerous
mountain road shaves those people, and only those peo-
ple, who do not shave themselves. Can there be such a
barber?

1.2 Applications of Propositional Logic

Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the speciÞcation of software and hardware, because these
speciÞcations need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to verify
the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is
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often ambiguous. Translating sentences into compound statements (and other types of logical
expressions, which we will introduce later in this chapter) removes the ambiguity. Note that
this may involve making a set of reasonable assumptions based on the intended meaning of the
sentence. Moreover, once we have translated sentences from English into logical expressions
we can analyze these logical expressions to determine their truth values, we can manipulate
them, and we can use rules of inference (which are discussed in Section 1.6) to reason about
them.

To illustrate the process of translating an English sentence into a logical expression, consider
Examples 1 and 2.

EXAMPLE 1 How can this English sentence be translated into a logical expression?

ÒYou can access the Internet from campus only if you are a computer science major or you
are not a freshman.Ó

Solution:There are many ways to translate this sentence into a logical expression. Although it is
possible to represent the sentence by a single propositional variable, such asp, this would not be
useful when analyzing its meaning or reasoning with it. Instead, we will use propositional vari-
ables to represent each sentence part and determine the appropriate logical connectives between
them. In particular, we leta, c, andf represent ÒYou can access the Internet from campus,Ó
ÒYou are a computer science major,Ó and ÒYou are a freshman,Ó respectively. Noting that Òonly
ifÓ is one way a conditional statement can be expressed, this sentence can be represented as

a � (c � ¬ f ). �

EXAMPLE 2 How can this English sentence be translated into a logical expression?

ÒYou cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16
years old.Ó

Solution:Let q, r , ands represent ÒYou can ride the roller coaster,Ó ÒYou are under 4 feet tall,Ó
and ÒYou are older than 16 years old,Ó respectively. Then the sentence can be translated to

(r � ¬ s) � ¬ q.

Of course, there are other ways to represent the original sentence as a logical expression,
but the one we have used should meet our needs. �
System SpeciÞcations

Translating sentences in natural language (such as English) into logical expressions is an essential
part of specifying both hardware and software systems. System and software engineers take
requirements in natural language and produce precise and unambiguous speciÞcations that can
be used as the basis for system development. Example 3 shows how compound propositions
can be used in this process.

EXAMPLE 3 Express the speciÞcation ÒThe automated reply cannot be sent when the Þle system is fullÓ
using logical connectives.

Solution:One way to translate this is to letp denote ÒThe automated reply can be sentÓ and
q denote ÒThe Þle system is full.Ó Then¬p represents ÒIt is not the case that the automated
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reply can be sent,Ó which can also be expressed as ÒThe automated reply cannot be sent.Ó
Consequently, our speciÞcation can be represented by the conditional statementq � ¬ p. �

System speciÞcations should beconsistent, that is, they should not contain conßicting
requirements that could be used to derive a contradiction. When speciÞcations are not consistent,
there would be no way to develop a system that satisÞes all speciÞcations.

EXAMPLE 4 Determine whether these system speciÞcations are consistent:

ÒThe diagnostic message is stored in the buffer or it is retransmitted.Ó
ÒThe diagnostic message is not stored in the buffer.Ó
ÒIf the diagnostic message is stored in the buffer, then it is retransmitted.Ó

Solution:To determine whether these speciÞcations are consistent, we Þrst express them using
logical expressions. Letp denote ÒThe diagnostic message is stored in the bufferÓ and letq
denote ÒThe diagnostic message is retransmitted.Ó The speciÞcations can then be written as
p � q, ¬p , andp � q. An assignment of truth values that makes all three speciÞcations true
must havep false to make¬p true. Because we wantp � q to be true butp must be false,
q must be true. Becausep � q is true whenp is false andq is true, we conclude that these
speciÞcations are consistent, because they are all true whenp is false andq is true. We could
come to the same conclusion by use of a truth table to examine the four possible assignments
of truth values top andq. �

EXAMPLE 5 Do the system speciÞcations in Example 4 remain consistent if the speciÞcation ÒThe diagnostic
message is not retransmittedÓ is added?

Solution:By the reasoning in Example 4, the three speciÞcations from that example are true
only in the case whenp is false andq is true. However, this new speciÞcation is¬q , which is
false whenq is true. Consequently, these four speciÞcations are inconsistent. �

Boolean Searches

Logical connectives are used extensively in searches of large collections of information, such
as indexes of Web pages. Because these searches employ techniques from propositional logic,
they are calledBoolean searches.

In Boolean searches, the connectiveAND is used to match records that contain both of
two search terms, the connectiveORis used to match one or both of two search terms, and the
connectiveNOT (sometimes written asAND NOT) is used to exclude a particular search term.
Careful planning of how logical connectives are used is often required when Boolean searches
are used to locate information of potential interest. Example 6 illustrates how Boolean searches
are carried out.

EXAMPLE 6 Web Page Searching Most Web search engines support Boolean searching techniques, which
usually can help Þnd Web pages about particular subjects. For instance, using Boolean searching
to Þnd Web pages about universities in New Mexico, we can look for pages matching NEW
AND MEXICO AND UNIVERSITIES. The results of this search will include those pages that
contain the three words NEW, MEXICO, and UNIVERSITIES. This will include all of the
pages of interest, together with others such as a page about new universities in Mexico. (Note
that in Google, and many other search engines, the word ÒANDÓ is not needed, although it is
understood, because all search terms are included by default. These search engines also support
the use of quotation marks to search for speciÞc phrases. So, it may be more effective to search
for pages matching ÒNew MexicoÓAND UNIVERSITIES.)
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