A Decomposition Theorem for Partially Ordered Sets
Author(s): R. P. Dilworth

Source: Annals of Mathematics, Jan., 1950, Second Series, Vol. 51, No. 1 (Tan., 1950),
pp- 161-166

Published by: Mathematics Department, Princeton University

Stable URL: https://www.jstor.org/stable/1969503

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics

JSTOR

This content downloaded from
114.212.83.30 on Wed, 12 Apr 2023 09:08:45 UTC
All use subject to https://about.jstor.org/terms


https://www.jstor.org/stable/1969503

ANNALS OF MATREMATICS
Vol. 51, No. 1, January, 1950

A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS

By R. P. DiLworTH
(Received August 23, 1948)

1. Introduction

Let P be a partially ordered set. Two elements a and b of P are camparable
if either @ = b or b = a. Otherwise a and b are non-comparable. A subset S of P
is independent if every two distinct elements of S are non-comparable. S is
dependent if it contains two distinet elements which are comparable. A subset
C of P is a chain if every two of its elements are comparable.

This paper will be devoted to the proof of the following theorem and some of
its applications.

THEOREM 1.1. Let every set of k + 1 elements of a partially ordered set P be de-
pendent while at least one set of k elements s independent. Then P is a set sum of
k disjoint chains.!

It should be noted that the first part of the hypothesis of the theorem is also
necessary. For if P is a set sum of & chains and S is any subset containing & + 1
elements, then at least one pair must belong to the same chain and hence be
comparable.

Theorem 1.1 contains as a very special case the Rad6-Hall theorem on repre-
sentatives of sets (Hall [1]). Indeed, we shall derive from Theorem 1.1 a general
theorem on representatives of subsets which contains the Kreweras (Kreweras
[2]) generalization of the Rad6-Hall theorem.

As a further application, Theorem 1.1 is used to prove the following imbedding
theorem for distributive lattices.

THEOREM 1.2. Let D be a finite distributive lattice. Let k(a) be the number of
distinct elements in D which cover a and let k be the largest of the numbers k(a).
Then D is a sublattice of a direct union of k chains and k is the smallest number
for which such an vmbedding holds.

2. Proof of Theorem 1.1.

We shall prove the theorem first for the case where P is finite. The theorem
in the general case will then follow by a transfinite argument. Hence let P be a
finite partially ordered set and let k& be the maximal number of independent
elements. If £ = 1, then every two elements of P are comparable and P is thus

1 This theorem has a certain formal resemblance to a theorem of Menger on graphs
(D. Koénig, Theorie der endlichen und unendlichen Graphen, Leipzig, (1936)). Menger’s
theorem, however, is concerned with the characterization of the maximal number of dis-
joint, complete chains. Another type of representation of partially ordered sets in terms of
chains has been considered by Dushnik and Miller [3] (see also Komm [4]). It can be shown
that if n is the maximal number of non-comparable elements, then the dimension of P in
the sense of Dushnik and Miller is at most n. Except for this fact, there seems to be little
connection between the two representations.
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162 R. P. DILWORTH

a chain. Hence the theorem is trivial in this case and we may make an argument
by induction. Let us assume, then, that the theorem holds for all finite partially
ordered sets for which the maximal number of independent elements is less than
k. Now it will be sufficient to show that if Cy, - - -, C} are k disjoint chains of
P and if a is an element belonging to none of the C;,then C; + --- + C; + a
is a set sum of % disjoint chains. For beginning with a set a1, - - -, a; of independ-
ent elements (which exist by hypothesis) we may add one new element at a
time and be sure that at each stage we have a set sum of % disjoint chains. Since
P is finite, we finally have P itself represented as a set sum of % chains.

Let, then, Cy, ---, Cx be k disjoint chains and let a be an element not be-
longing to C; + - -+ + Ci . Let U; be the set of all elements of C; which contain
a, let L; be the set of all elements of C; which are contained in a, and let N; be
the set of all elements of C; which are non-comparable with a. Finally let

U=Ui+ -+ U
L=L+ - +L
N=Ni+ -+ N
C=C+ - +0C

Clearly U; + N; + L; = C;and U + N + L = C.

We show now that for some 7 the maximal number of independent elements
in N + U — Ua, is less than k. For suppose that for each j there exists a set S;
consisting of k independent elements of N + U — U; . Since there are k elements
in S; and they belong to C = C; + --- 4+ Cy, there is exactly one element of
S; in each of the chains C; . Since S; contains no elements of U; it follows that
S; contains exactly one element of N;. Thus S = S; 4+ --- + S contains at
least one element of N; for each . Now let s; be the minimal element of S which
belongs to C;. s;exists since the intersection of S and C; is a finite chain which
we have proved to be non-empty. Furthermore, s; € N; since there is at least
one element of N; which belongs to S and all of the elements of U; properly con-
tain all of the elements of N;. Hence s;, - -+ , s e N. Now if s; = s; for 7 = j,
let s; € S,. Since S, contains an element ¢; belonging to C;, we have from the
definition of s; that t; = s; = s; and ¢; # s; since ¢; ¢ C; and s; € C;. But this
contradicts our assumption that the elements of S, are independent. Hence we
must have s; 2 s;for 7 # jand s, ---, s form an independent set. But since
s; belongs to N, s; is non-comparable with a and hence a, s, - - -, s is an inde-
pendent set containing 4 + 1 elements. But this contradicts the hypothesis of
the theorem and hence we conclude that for some m, the maximal number of
independent elements in N + U — U, is less than k.

In an exactly dual manner it follows that for some I, the maximal number of
independent elements in N 4+ L — L; is less than k.

Now let T be an independent subset of C — U,, — L;. If T contains an ele-
ment z belonging to U — U, and an element y belonging to L — L;, then
Z Z a = y contrary to the independence of T. Since

N+U—-Un)+N+L—-L)=C—Un—L
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DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS 163

it follows that T is either a subset f N + U — U, or of N + L — L;. Hence
the number of elements in T is less than k and thus the maximal number of
independent elements in C — U, — L; is less than k. Since U,, + L; is a chain
there is at least one independent set of ¥ — 1 elements in C — U,, — L;. Hence
by the induction hypothesis C — U, — L; = Cy + -+ + Ci_ where Cy , «- -,
Cj_, are disjoint chains. Let C be the chain U, + @ + L;. Then

CH+a=Cl+-+C

and our assertion is proved.

We turn now to the proof of the general case. Again when & = 1 the theorem
is trivial and we may proceed by induction. Hence let the theorem hold for all
partially ordered sets having at most ¥ — 1 independent elements and let P
satisfy the hypotheses of the theorem. A subset C of P is said to be strongly
dependent if for every finite subset S of P, there is a representation of S as a set
sum of %k disjoint chains such that all of the elements of C which belong to S are
members of the same chain. Clearly any strongly dependent subset is a chain.
Also from the theorem in the finite case it follows that a set consisting of a single
element is always strongly dependent. Since strong dependence is a finiteness
property it follows from the Maximal Principle that P contains a maximal
strongly dependent subset C;. Suppose that P — C; contains % independent
elements a; , - - - , ax . Then from the maximal property of C; we conclude that
C: + a; is not strongly dependent for each z. Hence there exists a finite subset
S; such that in any representation as a set sum of & chains there are at least two
chains which contain elements of Ci + a;. S; must clearly contain a; since C;
is strongly dependent. Let S = S; 4 --- 4+ Si. By the strong dependence of
Ci,8S =K, + --- + Ki where K, , ---, K; are disjoint chains such that for
some n < k we have S-C; & K, . Since S contains a, - - -, a; which are in-
dependent, for some m < k we have a,, ¢ K., . Let K; be the chain S,,-K; . Then
Sm=Ki+ -+ Kiand 8,-C; E Sn-8S-C; E Sn-K, = K- . But by defini-
tion am € Sm and am € K, . Hence Sn-(C; + am) & K, which contradicts the
definition of S,.. We conclude that P — C; contains at most ¥ — 1 independent
elements. But since C; is a chain and P contains a set of k& independent elements,
it follows that P — C; contains a set of ¥ — 1 independent elements. Thus by
the induction hypothesis we have P — C; = C> + --- 4 Ci . Hence

P=C+-+0C

and the proof of the theorem is complete.

3. Application to representatives of sets.

G. Kreweras has proved the following extension of the Rad6-Hall theorem on
representatives of sets:

Let A and B be two partitions of a set into n parts and let h be the smallest num-
ber such that for any r, r parts of A contain at most r + h parts of B. Let k be the
smallest number such that n + k elements serve lo represent both partitions. Then
h =L

This content downloaded from
114.212.83.30 on Wed, 12 Apr 2023 09:08:45 UTC
All use subject to https://about.jstor.org/terms



164 R. P. DILWORTH

To show the power of Theorem 1.1 we shall prove an even more general theo-
rem in which the partition requirement is dropped. Now if ¥ is any finite col-
lection of subsets of a set S we shall say that a set of n elements (repetitions
being counted) represents ¥ if there exists a one-to-one correspondence of the
sets of I onto a subset of the n elements such that each set contains its corre-
sponding element. For example, the set {1, 1, 1} represents the three sets {1, 2},
{1, 3}, and {1, 4}. The theorem can then be stated as follows:

THEOREM 3.1. Let A and B be two finite collections of subsets of some sel. Let
A and B contain m and n sets respectively. Let h be the smallest number such that
for every r, the union of any r + h sets of A intersects at least r sets of B. Let k be
the smallest number such that n + k elements serve to represent both collections U
and B. Then h = k.

It can be easily verified that if % and B are partitions of a set, then h as
defined in Theorem 2.1 is equivalent to the definition given in the theorem of
Kreweras.

For the proof let A consist of sets A1, --- , A» and B consist of sets By, -+,
B, . We make the sets 4;, -+, Am, B1, ---, B, into a partially ordered set
P as follows:

A;
B;
A; 2 B;if and only if 4; and B; intersect.

A i=1,,m

)%

[\

B’- j=1’-n-’n.

It is obvious that P is a partially ordered set under this ordering. Now let w be
the maximal number of independent elements of P. Since the union of any r + h
sets of U intersects at least r sets of B, it follows that any independent subset of
P can have at most »r + b + (n — r) = n + h elements. Hence w < n + h. On
the other hand for some r there are r + h sets of A whose union intersects pre-
cisely r sets of B. Hence these » 4+ h sets of A and the remaining n — r sets of
B form an independent subset of P containing n + h elements. Thusw = n + h.
By Theorem 1.1, P is the set sum of w chains Cy, - - - , C,, . Now if a chain C; con-
tains two sets they have a non-null intersection by definition. Hence for each
C; there is an element a; common to the sets of C;. But since 4;, ---, A, are
independent in P it follows that they belong to different chains and hence the
w elements a, , - -+, @, represent A. Similarly, a,, - - -, a, represent B and thus
n 4+ k = w. But since P cannot be represented as a set sum of less than w chains,
it follows that n + k = w = n + h. Hence h = k and the theorem is proved.

4, Proof of Theorem 1.2.
Let us recall that an element ¢ of a finite distributive lattice D is (union)
trreducible if ¢ = 2 U y implies ¢ = z or ¢ = y. It can be easily verified that if ¢
is irreducible, then ¢ < z U y implies ¢ < z or ¢ < y. From the finiteness® of S it

2 L is assumed to be finite for sake of simplicity. The theorem holds without this restric-
tion. In the proof, ‘‘elements covered by a’’ must be replaced by ‘“maximal ideals in a”’
and “‘irreducible elements’’ must be replaced by ‘‘prime ideals.”’
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DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS 165

follows that every element of D can be expressed as a union of irreducible ele-
ments. From this fact we conclude that if x > y, there exists at least one irre-
ducible ¢ such that z = g and y % ¢.

Now let P be the partially ordered set of union irreducible elements of D.
Let a be such that k = k(a). Then there are k elements a, , - - - , ax which cover
a. Let ¢; be an irreducible such that a; = ¢; and a % g¢;. Then if ¢; = g¢; where
t % jwehavea = a; N a; 2 ¢; N ¢; = ¢; which contradicts ¢ % g¢;. Hence
Q, - -, qr are an independent set of elements of P.

Next let g1, ---, g1 be an arbitrary independent subset of P. Let a’ = a
U ... Ug: and for each i let pi = ¢1 U --- Ugi, U ginU---Ugj. Now if
pi = a’ for some %, then

gi=giNa =qgNpi
=(@Ng)VU---U@Ngi)U(gNgia)VU--- UM (giNgy)

and hence ¢i = ¢i N ¢ for some j > 7. But then ¢} = ¢! contrary to independ-
ence. Thus a’ > p; for each 7 and p; U pj = o/ for i % j. Leta = p1N --- N p}
and for each s let p; = p1 N --- N piy N piyy N --- N pi. If p; = a, then
pi =piUa=piUpi=@iUp) N--- N @Upia) N @Upin) N---N
(pi U p1) = o which contradicts pf < d'. Hence p; > a and p; N p; = a for
t # j. Let p; = a; where a; covers a. Thena < a; Na; < p: N p; = afors = j
and hence a; N a; = a,7 # j. Thus a;, - - -, a; are distinct elements of D cover-
ing a. It follows that ! < & and hence k is the maximal number of independent
elements of P.

Now by Theorem 1.1 P is the set sum of k disjoint chains Cy, ---, Ck.
We adjoin the null element z of D to each of the chains C;. Then for each z € D,
there is a unique maximal element z; in C; which is contained in x. Now suppose
z > 2, U --- Uz in D. Then there exists an irreducible ¢ such that z = ¢ and
21U -+ U 2x £ ¢. But ¢ € C; for some 7 and hence 2, U --- U ax = z; = ¢

contrary to the definition of ¢. Hence z = z; U --- U 2 . Consider the mapping
of D into the direct union of C;, --- , Ck given by

z— {zy, -, T}
Nowifz; = ysfore =1, --- Jk,thenz =2, U--- Uy =9 U.-- Uy, = g

and the mapping is thus one-to-one. Since x Uy = z; U y; we have (zU y); =
z; Uy, . Butsince (x Uy);is union irreducible we get z Uy = (z Uy); o 2z =
@Ugphoryz(VUyiazz@Uyhiory,z@VUyisz: Uy 2
(x Uy):. Thus (x Uy); = z; Uy, and we have

gUy—-{z Uy, -, = Ul

Smilarly s Ny 2 z; Nyi=> @ N y): = 2: N yi. But z
Nysandy =22 Ny—=y: 2 (N y);. Hence z; N y;
(z N y); = z; N y; and we have

st Ny—=z: =
(z N y);. Thus

v v

zNy—{z Ny, oo,z Nyl
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166 R. P. DILWORTH

This completes the proof that D is isomorphic to a sublattice of a direct union of
k chains.

Now suppose that D is a sublattice of the direct union of ! chains Cy , - -+, C}
where [ < k. Again let a be such that k(a) = k and let a,, ---, ax be the k&
distinct elements covering a. Definea’ = a; U --- Ugiandletai =a, U --- U
aiiUai U -+ Ugforeachs. Nowa; = gt U --- U g) where ¢; ¢ Ci . And if
¢: = ' Uy/, then ¢i = z; Uy! where z/, y; ¢ C;. But then either ¢; = =i U yi = z;
or ¢i = z; Uyi = y! and hence either ¢gi = z’ or ¢; = y’. Thus each ¢; is union
irreducible. But a; U --- Ua, = a’ = q,{ fort =1, ---, 1. Thus for each 7 =
there is a j such that a; = g¢: . Since I < k there is some r such that a; = g¢i
U... Ugi = a = a . But then a, = a; N a, = a which contradicts the fact
that a, covers a. Hence ! = %k and we conclude that & is the least number of
chains whose direct union contains D as a sublattice. This completes the proof
of Theorem 1.2.

YALE UNIVERSITY
CALIFORNIA INSTITUTE OoF TECHNOLOGY
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