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 1. Introduction

 Let P be a partially ordered set. Two elements a and b of P are comparable
 if either a > b or b _ a. Otherwise a and b are non-comparable. A subset S of P

 is independent if every two distinct elements of S are non-comparable. S is

 dependent if it contains two distinct elements which are comparable. A subset

 C of P is a chain if every two of its elements are comparable.
 This paper will be devoted to the proof of the following theorem and some of

 its applications.

 THEOREM 1.1. Let every set of k + 1 elements of a partially ordered set P be de-
 pendent while at least one set of k elements is independent. Then P is a set sum of
 k disjoint chains.'

 It should be noted that the first part of the hypothesis of the theorem is also
 necessary. For if P is a set sum of k chains and S is any subset containing k + 1

 elements, then at least one pair must belong to the same chain and hence be
 comparable.

 Theorem 1.1 contains as a very special case the Rad6-Hall theorem on repre-
 sentatives of sets (Hall [1]). Indeed, we shall derive from Theorem 1.1 a general
 theorem on representatives of subsets which contains the Kreweras (Kreweras
 [2]) generalization of the Rad6-Hall theorem.

 As a further application, Theorem 1.1 is used to prove the following imbedding
 theorem for distributive lattices.

 THEOREM 1.2. Let D be a finite distributive lattice. Let k(a) be the number of
 distinct elements in D which cover a and let k be the largest of the numbers k(a).
 Then D is a sublattice of a direct union of k chains and k is the smallest number
 for which such an imbedding holds.

 2. Proof of Theorem 1.1.

 We shall prove the theorem first for the case where P is finite. The theorem
 in the general case will then follow by a transfinite argument. Hence let P be a

 finite partially ordered set and let k be the maximal number of independent

 elements. If k = 1, then every two elements of P are comparable and P is thus

 1 This theorem has a certain formal resemblance to a theorem of Menger on graphs
 (D. K6nig, Theorie der endlichen und unendlichen Graphen, Leipzig, (1936)). Menger's
 theorem, however, is concerned with the characterization of the maximal number of dis-
 joint, complete chains. Another type of representation of partially ordered sets in terms of
 chains has been considered by Dushnik and Miller [3 ] (see also Komm [4 ]). It can be shown

 that if n is the maximal number of non-comparable elements, then the dimension of P in
 the sense of Dushnik and Miller is at most n. Except for this fact, there seems to be little
 connection between the two representations.
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 166 R. P. DILWORTH

 This completes the proof that D is isomorphic to a sublattice of a direct union of
 k chains.

 Now suppose that D is a sublattice of the direct union of 1 chains C, ** ,Z
 where 1 < k. Again let a be such that k(a) = k and let al, * , ak be the k
 distinct elements covering a. Define a' = a1 U * U ak and let a' = a1 U ... U
 ai-1 U ai+l U ... U akfor each i. Now a' = q U * U ql where q' e C'. And if
 q' = x' U y', then q' = x' U y' where x, y e C'. But then either q' = x' U y' = x'
 or q' = x' U y' = y' and hence either q' = x' or qj = y. Thus each q' is union
 irreducible. But a, U * Uak = a'> q'for i = 1,** 1. Thus for each i < 1
 there is a j such that aj > q' . Since 1 < k there is some r such that a' > qs
 U * * * U q' = a' > a_ But then a, = a, f a, = a which contradicts the fact
 that ar covers a. Hence 1 ? k and we conclude that k is the least number of
 chains whose direct union contains D as a sublattice. This completes the proof
 of Theorem 1.2.
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