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Abstract
Abductive Learning is a framework that combines
machine learning with first-order logical reason-
ing. It allows machine learning models to exploit
complex symbolic domain knowledge represented
by first-order logic rules. However, it is challeng-
ing to obtain or express the ground-truth domain
knowledge explicitly as first-order logic rules in
many applications. The only accessible knowledge
base is implicitly represented by groundings, i.e.,
propositions or atomic formulas without variables.
This paper proposes Grounded Abductive Learning
(GABL) to enhance machine learning models with
abductive reasoning in a ground domain knowledge
base, which offers inexact supervision through a
set of logic propositions. We apply GABL on two
weakly supervised learning problems and found
that the model’s initial accuracy plays a crucial role
in learning. The results on a real-world OCR task
show that GABL can significantly reduce the effort
of data labeling than the compared methods.

1 Introduction
To address current limitations of data-driven machine learn-
ing, the next generation of Artificial Intelligence asks for
a strong integration of machine learning with knowledge-
driven reasoning such as logic inference [Bengio, 2017].
Recent years have witnessed a vast growth in this area,
representative progress includes Neuro-Symbolic Learning
(NeSy) [Garcez et al., 2019] and Statistical Relational AI
(StarAI) [Getoor and Taskar, 2007; Raedt et al., 2016]. How-
ever, most of them are trying to build an end-to-end learn-
ing pipeline by subsuming logical calculus into differentiable
modules in deep learning or statistical inference, in which
first-order logical formulas are utilized as the basic relational
topology for belief propagation and message passing.

Abductive Learning (ABL) [Zhou, 2019; Dai et al., 2019]
is a novel framework for combining machine learning with
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Figure 1: Example of the OCR Dictionary

pure first-order logical reasoning in a mutually beneficial
way. In ABL, the machine learning model learns to convert
raw data into primitive logic facts serving as input to symbolic
reasoning; while logical reasoning can infer the truth-value
of the facts, which are named as pseudo-labels, for train-
ing the machine learning model. The integration of the two
systems is realized by abduction, i.e., abductive reasoning,
which can selectively infer particular predicted facts based
on existing background knowledge [Magnani, 2009]. There-
fore, ABL allows machine learning to utilize complex domain
knowledge such as first-order logic theories [Dai et al., 2019;
Huang et al., 2020].

Nevertheless, in many real-world applications, accessible
knowledge bases only consist of a finite number of ground-
ings (i.e., propositions or atomic logical formulas without
variables). To give an example, for Optical Character Recog-
nition (OCR) tasks, it is difficult to explicitly represent the
underlying structure of words and characters with first-order
theories, while the set of correct spellings can be easily ob-
tained from a dictionary. As shown in figure 1, the dictio-
nary of OCR can be represented as a ground knowledge base
consisting of ground atoms of a predicate valid word(Y),
such as valid word([’h’, ’a’, ’v’, ’e’]), etc.

For StarAI and NeSy systems, the lack of first-order logic
formulas means there is no relational structure to establish the
paths for belief propagation and message passing in proba-
bilistic reasoning; for abduction-based approaches, the lack
of logic clauses makes logical abduction impossible. A
possible workaround is formulating this type of problem as
multi-class learning [Li et al., 2018], in which each ground
atom (proposition) corresponds to a category. However, the
lack of instances for each category brings class-imbalance is-
sues [Japkowicz and Stephen, 2002], which makes machine
learning even harder. Moreover, treating the groundings as in-
dependent categories neglects the implicit relational structure



among them (e.g., in English, the probability of “s” followed
by “e” is much higher than that of “s” followed by “z”).

This paper presents Grounded Abductive Learning
(GABL) to solve the above deficiency, which allows machine
learning models to exploit ground domain knowledge base
within first-order logic context. Abduction in GABL is ac-
complished by augmenting the ground knowledge base with
a default abductive logic program, which contains some gen-
eral assumptions for abducing the pseudo-labels. For exam-
ple, in OCR tasks, given an incorrect recognition result from
an under-trained machine learning model, the augment ab-
ductive logic program could be “finding the word in the dic-
tionary with the highest recognition confidence”. The strong
expressiveness power of first-order logic allows GABL to ex-
ploit various complex assumptions in different applications.

GABL provides a way to study in ABL, as the abductive
reasoning in GABL is explicitly grounded. From the empir-
ical study in a synthetic dataset, we find that the initial ac-
curacy of the machine learning model is crucial for GABL.
When model’s prediction accuracy is higher than a certain
threshold, GABL could improve model performance with
unlabeled data. Furthermore, we verify the performance of
GABL in a real-world weakly supervised OCR task. Results
show that GABL can use unlabeled data and ground know-
ledge base to improve model performance and significantly
decrease data labeling effort.

2 Related work
In recent years, many approaches have been proposed to deal
with the lack of labeled data in machine learning. Semi-
supervised learning is a powerful technique that attempts to
exploit unlabeled data to improve model performance without
human intervention. One category of semi-supervised learn-
ing methods related to this work is the proxy-label methods,
which leverages the pre-trained model to produce pseudo-
labels for unlabeled data based on some heuristics. The rep-
resentatives of them are Self-training [Yarowsky, 1995] and
Tri-training [Zhou and Li, 2010]. The self-training method
predicts the label of input data, and then uses the predicted
examples with probability higher than a pre-defined threshold
or the top N confident predicted samples to retrain the model.
Tri-training is a disagreement-based method based on ensem-
ble, it uses diverse models to vote for the pseudo-labels for
retraining the model.

This work is also related to multi-class learning. In multi-
class classification, the model is required to classify instances
into one of many categories. Error-Correcting Output Codes
(ECOC) [Dietterich and Bakiri, 1994] is an ensemble method
that transforms multi-class classification task into multi-label
learning by encoding each class with an error-correcting
code, which introduces sub-labels and can model a certain
degree of label correlation. The performance of ECOC is
highly related to the label encoding, which is difficult to con-
struct without domain knowledge. Meanwhile, there are few
studies about ECOC under the semi-supervised setting.

Some methods consider using symbolic domain know-
ledge to help model training. Neuro-Symbolic Learning
(NeSy) [Garcez et al., 2019] targets at combining machine

learning with symbolic reasoning. It tries to integrate the
ability to learn from the environment (for perception and pat-
tern recognition) and reason from what has been learned (for
reasoning and explanation). In most NeSy systems, learn-
ing and reasoning are both realized by a neural network, in
which the external domain knowledge is used for building an
explainable neural structure. Statistical Relational Learning
(SRL) [Getoor and Taskar, 2007; Raedt et al., 2016] shares
the same motivation with NeSy, but it attempts to use domain
knowledge to construct or initialize a probabilistic graphical
model structure for statistical inference.

Abductive Learning (ABL) [Dai et al., 2019; Zhou, 2019]
is a framework that combines machine learning with pure
first-order logical reasoning in a mutually beneficial way.
ABL focuses on using first-order logic rules to revise model
predicted labels and using these revised labels for training
machine learning models. However, in order to perform ab-
duction, a first-order abductive logic theory is required.

Unlike previous approaches, GABL exploits both un-
labeled data and a ground knowledge base to improve model
performance. It is different from NeSy, SRL, and ABL,
which require first-order logic rules as domain knowledge.

3 Grounded Abductive Learning
This section presents problem setting and the Ground Abduc-
tive Learning (GABL) approach.

3.1 Problem Setting
The main target of this paper is to improve a pre-trained
model, whose labeled training data are unavailable, with a
set of unlabeled instances together with a ground knowledge
base (GKB) that constrains the model’s output space.

Formally, the input of the task contains a set of unlabeled
training data D = {x1, . . . ,xm} and a ground knowledge
base GKB. Each xi ∈ X is corresponding to an unknown
label yi ∈ Y , where X is the feature space and Y is the label
space. GKB ⊆ Y is a subset of the label space. In this
paper, we consider classification problems, so Y is discrete
and symbolic, i.e., each point yi ∈ Y can be considered as
a ground atom or a proposition in Herbrand universe. For
example, for the OCR task in figure 1, x is an image of a
hand-written word, y is a string composed of the 26 English
characters. As we can see, Y could be infinitely large (e.g.,
there could be an infinite number of possible strings). GKB
is the set of ground atoms that lists all valid candidates for y,
e.g., the dictionary of correct spellings in English. Hence, for
each xi ∈ D with a corresponding yi, we have yi ∈ GKB ⊆
Y . From the aspect of first-order logic, GKB is the answer
set [Lifschitz, 2008] of an unknown first-order logic theory.

We denote the pre-trained machine learning model to be
improved as M : X 7→ Y . Given an input xi ∈ D, this
model can output ŷi = M(xi) as its prediction.

3.2 Abductive Learning
In Abductive Learning (ABL), the machine learning model
learns to convert raw data into primitive logic facts, which
are regarded as pseudo-labels ŷ for logical reasoning. Mean-
while, abduction can selectively infer particular predicted



facts based on first-order logic rules. The inferred facts,
which are regarded as abduced-labels ȳ, will be utilized like
ground-truth labels for training the machine learning model.

Abduction [Josephson and Josephson, 1996] is a basic
form of logical inference for seeking the best explanation
for observations based on implication. For example, when
there is a formula “wet ground ← rain” (rain causes wet
ground). When we observed the ground is wet, we could
guess that it has rained.

Challenge It is challenging for GABL to realize abduction
based on a ground knowledge base without any first-order
logic rules. The ground knowledge base could only offer
predicates such as “valid word(Y)” to judge whether Y
belongs to the knowledge base. However, abduction requires
that there are some first-order logic rules for abduction. Thus,
it is impossible to perform abduction when there is only a
ground knowledge base.

3.3 Implementation of GABL
In order to perform abduction in a ground knowledge base,
we propose to include an augmenting GKB with an abduc-
tive logic program that contains some very general assump-
tions that can constrain the search for ȳ—the revised pseudo-
labels for the predicted ŷ by M .

Considering the motivating OCR task that tries to map
images to strings, we assume each label yi as a sequence
[yi,1, . . . , yi,Li ], where Li is the length of sequence and yi,l
is l-th sub-label of yi.

For this type of problem, we could include a general ab-
ductive program that uses GKB to constrain the search of
pseudo-labels by string distance (e.g., edit distances). The
program can be represented in first-order logic by following
definitive clause:

program(ŷ, ȳ, GKB) ← between(1,m,D)

∧ distance(ŷ, ȳ, D)

∧ ȳ ∈ GKB

∧ confidence(ȳ, C)

∧ C ≥ threshold. (1)

Here m constrains the maximum allowed distance be-
tween model M ’s predicted-label ŷ and abduced-label ȳ;
threshold is used to exclude results with low confidence; C
is the confidence of ȳ that calculated by M . According to this
first-order logic rule, GABL can automatically find out the ȳ,
which is close enough to ŷ and has high confidence. When
there is more than one solution after abduction, GABL can
include another rule to pick out the most confident one.

In fact, distance(ŷ, ȳ, D) and confidence(ȳ, C) could
be combined as that how similar is the model predicted re-
sult to groundings. We use the model training loss function to
represent the similarity because model training loss function
is carefully designed for learning task. In other words, when
we consider the confidence in the abduction, we will directly
select abduced-labels based on the loss function. Otherwise,
we will select abduced-labels based only on the distance.

The Grounded Abductive Learning algorithm is described
in algorithm 1. GABL will repeat E epochs and for every

Algorithm 1 Grounded Abductive Learning
Input: Unlabeled DatasetDu, Pre-trained Model M , Ground
Knowledge Base GKB, Augment Abductive Logic Program
P
Parameter: Epoch E
Output: Fine-tuned Model M

1: for e = 1 to E do
2: D̄ = []
3: for x ∈ Du do
4: r̂ = M(x)
5: ȳ = abduce(r̂, GKB, P)
6: if ȳ is not None then
7: D̄.append((x, ȳ))
8: end if
9: end for

10: Updating model M via D̄
11: end for
12: return M

epoch, GABL uses model M to generate the result r̂ (labels
with confidence) of input data x. GABL selects abduced-
labels based on Eq. (1). When the ŷ exits, GABL accepts it
as training data and puts it into D̄. At the end of the epoch,
we use the training database D̄ to update model M .

4 Empirical Study
This section discusses why GABL can improve the machine
learning model performance by leveraging unlabeled data and
ground knowledge base. Firstly, we illustrate the mecha-
nism of GABL through an intuitive example. Secondly, We
construct experiments and aim to address: 1) how model
accuracy would impact abduction learning when given do-
main knowledge; 2) How domain knowledge affects abduc-
tive learning.

4.1 Mechanism of GABL
Intuitively, GABL is similar to the classical self-training
method [Yarowsky, 1995] for semi-supervised learning,
which is a pseudo-label based method that uses model-
predicted labels for further model training. Besides, GABL
can exclude invalid pseudo-labels and even correct inaccu-
rate pseudo-sub-labels, which could be more efficient for ex-
ploiting the unlabeled data than self-training methods. For the
input data x, when the model predicted label ŷ is inconsistent
with the ground knowledge base, abduction needs to revise ŷ
into ȳ that belongs to ground knowledge base. It assumes
that only a few parts of the predicted label are incorrect. The
pseudo-label ŷ might be distorted from a neighboring label ȳ
that belongs to GKB. On the contrary, each ŷ, which is in
the neighborhood of ȳ, should be revised to ȳ.

Figure 2 better illustrates the mechanism of abduction in
GABL. As shown in figure 2, every ȳ in GKB covers a part
of the space like a Vonoroi diagram [Edelsbrunner and Seidel,
1986] under some special distance measurement (Hamming
distance or other distance). Because of some disturbance, the
predicted results float from points into their neighborhood,
e.g., a ball surrounding it. The radius of balls depends on
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Figure 2: The labels space Y divided by neighborhoods of ground-
ings in abduction. The red points in the center of circles are ground-
ings in GKB. Space is divided into four parts according to the
distance measure in the label space Y . The predicted result (the yel-
low points) would appear in the blue circles with high probability.
For example, an input data, whose ground truth label is point A,
is predicted as A’ and we can use abduction method to re-annotate
point A’ as A and fine-tune the model. However, when two points in
GKB are too closed, or the model prediction error is too large, the
abduced result could be wrong. For example, an input data, whose
ground-truth label is point C, is predicted as C’ and wrongly abduced
as point D because of its distance to D is closer than C.

the accuracy of the pre-trained model, and higher accuracy
leads to a smaller radius. When the model performance is
ideal, almost all pseudo-labels fall into ground-truth covered
space and can be classified correctly. When disturbance be-
comes more prominent, the radius of circles is bigger, more
predicted results would be wrongly classified and may dam-
age model performance.

We can use uncertainty to explain the above phenomenon.
According to information theory [Cover, 1999], the uncer-
tainty about the ground-truth label based on the pseudo-label
can be decomposed into the entropy of the ground-truth label
and the mutual information of the pseudo-label about the
ground-truth label. When the task is given, the uncertainty
of model prediction depends on the model’s prediction ac-
curacy. Therefore, the model’s prediction accuracy plays a
crucial role in abductive learning.

Moreover, GABL is a multi-epoch method. The model per-
formance is boosted by repeatedly executing prediction and
abduction. The model’s accuracy after each epoch of train-
ing depends on the accuracy of the previous epoch. It can be
seen that the initial accuracy of the model is crucial. Through
some assumptions, we find that the accuracy threshold exists
when given a domain knowledge base. First of all, we assume
that after training, the generalization accuracy of the model is
infinitely close to the accuracy of the data set. Second, we
assume the higher the model’s prediction accuracy leads to
the higher the accuracy of the abduced result. Third, we as-
sume that the prediction accuracy of all categories is almost
the same. We note the accuracy of the label predicted by the
model in epoch i as p̂ci , and the accuracy of the sub-label after
abduced is p̄ci . In particular, p̂c0 represents the sub-label pre-
diction accuracy predicted by the initial model, and p̄c0 repre-
sents the abduced sub-label accuracy predicted by the initial
model. This means that if p̂c0 < p̄c0, then p̂c0 < p̄c0 ≈ p̂c1 <
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Figure 3: Sequence prediction setting. There are two settings when
the length of the label is L. (a) Every sub-label has a unique machine
learning model for classification; (b) All sub-labels share the same
perception model.

Figure 4: Examples of GKBs.

p̂c1... ≈ p̂cE < p̂cE , where E means training epochs. But if
p̂c0 > p̄c0, then p̂c0 > p̄c0 ≈ p̂c1 > p̂c1... ≈ p̂cE > p̂cE . Therefore,
there is a threshold pt1. When p̂c0 > pt1, the GABL can be
help the model improve performance. At the same time, there
is another threshold pt2. When p̂c0 < pt2 the GABL would
hurt model performance, and the accuracy rate will gradually
decrease. Therefore, there are accuracy thresholds pt1 and
pt2, and we note them as pt for convenience.

4.2 Experiment on Synthetic Data
In this experiment, we verify whether there exists an initial
accuracy threshold pt that improves the model during abduc-
tive learning with the augment program in Eq. (1), and ex-
plore what would impact the accuracy threshold pt based on
the synthesized dataset. The code is available for download1.

Does the accuracy threshold exist?
Dataset The dataset includes two parts, a ground know-

ledge base GKB represented by a set of groundings (as
shown in figure 4)) and unlabeled training data Du =
{x1,x2, ...,xn}. The groundings are generated by differ-
ent domain knowledge base which includes hamming code
of length 7 (experimental results note as “hamming-*”) and
decimal addition equation of length between 5 and 7 (experi-
mental results note as “addition-*”). Every unlabeled data xi

contains Lid features, Li represents the length of label yi =
[yi,1, yi,2, ..., yi,Li ] ∈ GKB, d represents every sub-label
yi,k corresponds to d features, such as [xi,(k−1)d+1, ..., xi,kd].
[xi,(k−1)d+1, ..., xi,kd] is sampled from basic data (MNIST
images [LeCun et al., 1995], CIFAR-10 images [Krizhevsky
and Hinton, 2009] or synthetic data (as shown in figure 5)) ac-
cording to sub-label yi,k. Images of plus and equal signs are
additionally added to MNIST images and CIFAR-10 images.

1https://github.com/AbductiveLearning/GABL



Figure 5: The distribution of synthetic data.

Experiment Setting Mimicking the perception-and-
reasoning pipeline of NeSy and ABL models, we use one
model for predicting the sub-labels and then feed them to
GKB for reasoning. Specifically, as shown in figure 3(a),
model M converts [xi,(k−1)d+1, ..., xi,kd] into sub-label yi,k.
Ideally, the final result ŷi, which includes [ŷi,1, ŷi,2, ..., ŷi,L],
belongs to GKB. When basic data are MNIST images (or
CIFAR-10 images), we use CNN as perception model M and
note experiment result as “mnist” (or “cifar”). When basic
data are synthetic data, we use KNN (or decision tree) as per-
ception model M and note experiment result as “KNN” (or
“DT”). We control the model’s initial accuracy through noisy
data or controlling the number of pre-training data. Abduc-
tion considering model prediction confidence or not, are both
tested. When abduction does not consider confidence, GABL
rejects the sample with multiple solutions. Additionally, we
set k = 3 in KNN and let each leaf node of the decision tree
at least three samples in training.

Experimental Results Figure 6 shows there is an accuracy
threshold in experiments. The experiments are conducted
based on different GKB when models with different initial
accuracy. As shown in figure 6, there are boundaries (accu-
racy threshold) in all experiments. When model initial pre-
diction accuracy is high enough, GABL improves model per-
formance via unlabeled data. It is worth noting that when we
utilize model prediction confidence in abduction, the accu-
racy threshold is lower than the accuracy of abduction only
based on model classification results.
How does domain knowledge affect the threshold?

Dataset & Setting We use random binary fixed-length
code as GKB whose size N and code’s length L can be
controlled. The basic data are sampled from synthetic data.
We use a decision tree as the base model and allow only one
sample in the leaf node in training. Abduction does not con-
sider model prediction confidence and only uses model clas-
sification results. As shown in figure 3(b), when the code
length of GKB is L, we use L classifiers as the perception
model and the k-th classifier response to predict k-th sub-
label. It can avoid some special situations. For example,
when there is only one model for predicting all sub-labels
and GKB = {“101”, “100”}, the training process is almost
supervised learning.

Experimental Results Figure 7 illustrates the relationship
between accuracy threshold pt and experiments’ parameters
(the length L of groundings and the size N of GKB). The
result in figure 7 shows that when GKBs have same size N ,
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Figure 6: Trained accuracy of different model’s initial accuracy ex-
periments. (a) and (b) use hamming code as GKB. (c) and (d) use
addition equation as GKB. (a) and (c) use classification result of
sub-label in abduction. (b) and (d) consider confidence generated by
the model in abduction.
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Figure 7: Accuracy threshold varies with different lengths of sub-
labels and different sizes of the ground knowledge base (GKB).
Every accuracy threshold pt in the figure is the maximum value in
10 experiments in which the GKBs have the same label’s length L
and GKB’s size N .

different label lengths have different threshold pt. Moreover,
the longer code length (number of sub-labels) requires lower
threshold pt. It is like information transmission, which uses
longer code to overcome noise in the channel.

Summary In these experiments, we empirically verify that
in Ground Abductive Learning (GABL), there is a threshold
pt, such that when the model accuracy is higher than pt,
GABL with the abductive program in Eq. (1) will improve
model performance. Furthermore, the pt is related to the
sparsity of label space Y , which is mainly influenced by the



Figure 8: A handwriting example in OCR task.

size N of GKB and the length L of the label. In short, a
sparser space offers more tolerance of model errors and re-
quires lower pre-trained model accuracy of task.

5 Optical Character Recognition Experiments
This section describes an experiment that applies GABL to a
handwritten Optical Character Recognition (OCR) task. The
experiment’s main objective is to verify whether GABL can
be applied in real-world applications with noisy input data.

Optical Character Recognition is an important application
in the real world. For example, many handwriting archival
materials are not transcribed into text. It is not friendly
for amateurs to read and not easy for information retrieval.
Therefore, it is meaningful to transcribe these handwrit-
ten documents into text. In practice, there exist two kinds
of handwriting recognition tasks, lexicon-free and lexicon-
based. Lexicon-based handwriting recognition offers a lex-
icon for model inference, which means that it should pick
words in the lexicon.

Dataset We use IAM-database [Marti and Bunke, 2002]
as the test benchmark. IAM-database contains 115,320 iso-
lated word-level English handwriting images which are not
pre-segmented. An example is shown in figure 8. More-
over, this is the first time that abductive learning is applied to
tasks with unsegmented raw inputs. We only reserve words
whose length is longer than 3 because there are too many
short words, which causes the long-tail problem and is be-
yond this article’s scope. We split the dataset into labeled
data, unlabeled data, and test data in experiments. We leave
10% of the data for testing and randomly pick out different
number data as labeled data. We collect all labels of the IAM
database’s images as the ground knowledge base (GKB).

Experimental Setting The setting in this experiment is
like figure 3(a), where the same model predicts each sub-
labels. We use CRNN [Shi et al., 2017] as the basic machine
learning model. During the prediction, the CRNN greedy
selects the highest probability letters of each position and
then merges the repeating letters. We use Burkhard-Keller-
tree [Burkhard and Keller, 1973] (BK-tree) to select similar
candidates in GKB and use edit distance to measure the sim-
ilarity between candidates in BK-tree. At last, we pick the
abduced pseudo-labels ranked by the CTC loss [Graves et al.,
2006]. We test our method in a semi-supervised setting. We
use labeled data to train the model and then combine labeled
data and abduced data for the training model.

We compare GABL with three types of semi-supervised
baselines which all use CRNN as the basic model. 1)
ST: Self-training methods [Yarowsky, 1995]; 2) Tri: Tri-
training [Zhou and Li, 2010]; 3) VAT: Virtual Adversarial

Table 1: Accuracy in handwriting experiments.

5% 10% 15% 20% 25% 100%

CRNN 0.262 0.434 0.515 0.561 0.592 0.742

ST 0.461 0.572 0.636 0.660 0.677 -
Tri 0.222 0.484 0.588 0.638 0.647 -

VAT 0.301 0.476 0.567 0.594 0.627 -
GABL 0.615 0.674 0.713 0.717 0.720 -

Training [Miyato et al., 2019]. We also test CRNN’s per-
formance in fully supervised learning.

Experimental Results We use the model’s best perfor-
mance on the test set as the experiment result. Because
the performance of the comparison method will deteriorate
rapidly as the number of training epochs increases, and it is
difficult to determine the optimal performance through the
number of training epochs. As shown in table 1, Grounded
Abductive Learning has achieved the best performance in the
handwritten Optical Character Recognition tasks. Although it
is not a fair comparison, GABL utilizes a ground knowledge
base to improve model performance and reduce the number
of labeled data.

We also discover that insufficient unlabeled data could
limit GABL’s performance due to model overfitting on in-
sufficient training data during the abduction process. Using
all unlabeled data in one epoch may trap the model in a local
optimum. When we subsample a batch of data for training in
every epoch, models achieve better performance in the OCR.

The experiments are run on a single V100S GPU. GABL
takes about 48 hours to train a CRNN model. In each epoch,
GABL takes twice as much time as self-training. GABL is
faster than the Tri-training and slower than the VAT.

6 Conclusion
This paper presents Ground Abductive Learning (GABL)
to exploit the logical domain knowledge base represented
by groundings. By augmenting the ground knowledge base
with a program that exploits edit distance to abduce pseudo-
labels, GABL can significantly outperform the compared
supervised and semi-supervised learning approaches given
the same amount of labeled data. Empirical study shows that
the augment logic program can improve the performance of
model when the accuracy of the pre-trained model exceeds a
threshold. From the results of our experiments with synthetic
data, we show that the threshold depends on the size of the
ground knowledge base and the sparsity of the space covered
by groundings. In general, a ground knowledge base can be
regarded as an answer set of a first-order logic theory [Lifs-
chitz, 2008]. Thus GABL is suitable for combining machine
learning with any type of logic background knowledge.

Acknowledgment
The authors thank the Nanjing University-Imperial College
London Machine Learning Joint Research Hub and the Office
of International Cooperation & Exchanges of Nanjing Uni-
versity for their financial support.



References
[Bengio, 2017] Yoshua Bengio. The consciousness prior.

arXiv preprint arXiv:1709.08568, 2017.
[Burkhard and Keller, 1973] Walter A. Burkhard and

Robert M. Keller. Some approaches to best-match file
searching. Communications of the ACM, 16(4):230–236,
1973.

[Cover, 1999] Thomas M Cover. Elements of information
theory. John Wiley & Sons, 1999.

[Dai et al., 2019] Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu,
and Zhi-Hua Zhou. Bridging machine learning and logi-
cal reasoning by abductive learning. In Advances in Neu-
ral Information Processing Systems 32 (NeurIPS), pages
2811–2822, 2019.

[Dietterich and Bakiri, 1994] Thomas G Dietterich and Ghu-
lum Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intel-
ligence Research, 2:263–286, 1994.

[Edelsbrunner and Seidel, 1986] Herbert Edelsbrunner and
Raimund Seidel. Voronoi diagrams and arrangements.
Discrete & Computational Geometry, 1(1):25–44, 1986.

[Garcez et al., 2019] Artur S. d’Avila Garcez, Marco Gori,
Luı́s C. Lamb, Luciano Serafini, Michael Spranger, and
Son N. Tran. Neural-symbolic computing: An effective
methodology for principled integration of machine learn-
ing and reasoning. Journal of Applied Logic, 6(4):611–
632, 2019.

[Getoor and Taskar, 2007] Lise. Getoor and Ben Taskar, ed-
itors. Introduction to statistical relational learning. MIT
Press, Cambridge, Massachusetts, 2007.

[Graves et al., 2006] Alex Graves, Santiago Fernández,
Faustino J. Gomez, and Jürgen Schmidhuber. Connec-
tionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Machine
learning (ICML), pages 369–376, 2006.

[Huang et al., 2020] Yu-Xuan Huang, Wang-Zhou Dai, Jian
Yang, Le-Wen Cai, Shaofen Cheng, Ruizhang Huang, Yu-
Feng Li, and Zhi-Hua Zhou. Semi-supervised abductive
learning and its application to theft judicial sentencing. In
Proceedings of the 20th IEEE International Conference on
Data Mining (ICDM), pages 1070–1075, 2020.

[Japkowicz and Stephen, 2002] Nathalie Japkowicz and
Shaju Stephen. The class imbalance problem: A sys-
tematic study. Intelligent Data Analysis, 6(5):429–449,
2002.

[Josephson and Josephson, 1996] John R Josephson and Su-
san G Josephson. Abductive inference: Computation, phi-
losophy, technology. Cambridge University Press, 1996.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geof-
frey Hinton. Learning multiple layers of features from tiny
images. Technical report, 2009.

[LeCun et al., 1995] Yann LeCun, Lawrence D Jackel, Léon
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