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 876 L. MIRSKY [October

 A DUAL OF DILWORTH'S DECOMPOSITION THEOREM

 L. MiRSKY, University of Sheffield, England

 Let P be a partially ordered set. A subset S of P will be called a chain if
 any two elements in S are comparable; it will be called an antichain if no two
 (distinct) elements in S are comparable. In particular, the empty set is both a
 chain and an antichain. A chain is said to be maximal if it is not a proper subset
 of any chain. An element x in S is said to be maximal if y ? x for every element y
 in S which is comparable with x.

 We owe to Dilworth [1] the following well-known and important decom-
 position theorem:

 THEOREM 1. Let P be a partially ordered set and m a natural number. If P
 possesses no antichain of cardinal m + 1, then it can be expressed as the union of m
 chains.

 It may be of some interest to note that this statement remains valid if the
 roles of chains and antichains are interchanged. Thus we have the following
 result:

 THEOREM 2. Let P be a partially ordered set, and m a natural number. If P
 possesses no chain of cardinal m + 1, then it can be expressed as the union of m
 antichains.

 Thus, in a formal sense, Theorem 2 may be regarded as a 'dual' of Theorem 1.
 However, as we shall see, the proof of the dual result is considerably easier
 than that of Dilworth's original theorem. In particular, to establish Theorem 1
 we need first to deal with the case where P is finite (see Tverberg's elegant treat-
 ment in [5]) and then extend the conclusion to the general case, say by invoking
 Rado's selection principle (the details can be found, e.g., in [3 ]). By contrast, a
 single induction argument suffices to prove Theorem 2.

 When m =1, the assertion holds trivially. Let m ?2; assume that the asser-
 tion holds for mr-1, and let P be a partially ordered set which has no chain of
 cardinal m+1. The antichain M consisting of all maximal elements in P is
 clearly non-empty since the maximal element of every maximal chain belongs to
 M. Further, no chain in P\M has cardinal m. For assume, on the contrary, that

 xl < x2 < . . . < mXnt X; 1E P\M ( 1 <_! k :_! m)*-

 Then, since this chain has cardinal m, it is maximal and so xmeM, which con-
 tradicts the relation xmeP\M. Since, then, no chain in P\M has cardinal m, it
 follows by the induction hypothesis that P\M can be expressed as the union of
 m -1 antichains. Hence P can be expressed as the union of m antichains.

 We note an easy consequence of Theorem 2.

 COROLLARY. Let r, s be positive integers. Then a partially ordered set of rs+1
 elements possesses a chain of cardinal r + I or an antichain of cardinal s + 1 or both.
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 If there is no chain of cardinal r+1, then the given set P can be expressed as
 the union of r antichains, which may be assumed to be pairwise disjoint, say

 P =A1U . . . UAr. Hence, denoting by I A the cardinal of A, we have

 rs+ 1 =A1 + .+ AfI.
 Therefore

 rs + 1 < r max AI

 and so s + 1 < max Af, as required. I t should be noted that the corollary follows
 in just the same way from Theorem 1, and also that it is best possible in the
 sense that rs + 1 cannot be replaced by rs.

 In conclusion, we recall a result of Erdos and Szekeres [2] (see Seidenberg

 [4] for a very short proof) which is an easy consequence of the corollary: Each
 sequence of rs+ 1 real terms possesses an increasing subsequence of r + 1 terms or a
 decreasing subsequence of s+1 terms or both. The deduction of this result from the
 corollary appears to be quite well known (or may be left as an exercise for the
 reader), and we omit the details.
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 TOPOLOGIES ON ORDERED SETS

 F. W. LOZIER, The Cleveland State University

 A recent problem in this MONTHLY [1 ] asks whether it is possible to topo-
 logize the integers in such a way that the connected sets are precisely- the sets of
 consecutive integers. The object of this note is to point out that, for a suitable
 generalization of "sets of consecutive integers," there is a simple necessary and
 sufficient condition for any partially ordered set to have such a topology.

 Let (P; < ) be a partially ordered set. For a, bCP we write aRb if and only if
 a<b and {xCPIa<x<b}=0, or b<a and {xCPIb<x<a}=0. We say
 that (a,, * * *, an) is an R-chain of length n connecting a1 and an (n may be 1) if
 and only if aiRai+1 for 1 <i <n; if ai A CP for each i, we say (a1, , a,) is
 an R-chain in A. Finally, we say that A CP is a set of consecutive elements of P
 if and only if for all a, b A there is an R-chain in A connecting a and b.
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